Metamath Proof Explorer


Definition df-mgmhm

Description: A magma homomorphism is a function on the base sets which preserves the binary operation. (Contributed by AV, 24-Feb-2020)

Ref Expression
Assertion df-mgmhm MgmHom=sMgm,tMgmfBasetBases|xBasesyBasesfx+sy=fx+tfy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmgmhm classMgmHom
1 vs setvars
2 cmgm classMgm
3 vt setvart
4 vf setvarf
5 cbs classBase
6 3 cv setvart
7 6 5 cfv classBaset
8 cmap class𝑚
9 1 cv setvars
10 9 5 cfv classBases
11 7 10 8 co classBasetBases
12 vx setvarx
13 vy setvary
14 4 cv setvarf
15 12 cv setvarx
16 cplusg class+𝑔
17 9 16 cfv class+s
18 13 cv setvary
19 15 18 17 co classx+sy
20 19 14 cfv classfx+sy
21 15 14 cfv classfx
22 6 16 cfv class+t
23 18 14 cfv classfy
24 21 23 22 co classfx+tfy
25 20 24 wceq wfffx+sy=fx+tfy
26 25 13 10 wral wffyBasesfx+sy=fx+tfy
27 26 12 10 wral wffxBasesyBasesfx+sy=fx+tfy
28 27 4 11 crab classfBasetBases|xBasesyBasesfx+sy=fx+tfy
29 1 3 2 2 28 cmpo classsMgm,tMgmfBasetBases|xBasesyBasesfx+sy=fx+tfy
30 0 29 wceq wffMgmHom=sMgm,tMgmfBasetBases|xBasesyBasesfx+sy=fx+tfy