Description: A magma homomorphism is a function on the base sets which preserves the binary operation. (Contributed by AV, 24-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-mgmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cmgmhm | |
|
1 | vs | |
|
2 | cmgm | |
|
3 | vt | |
|
4 | vf | |
|
5 | cbs | |
|
6 | 3 | cv | |
7 | 6 5 | cfv | |
8 | cmap | |
|
9 | 1 | cv | |
10 | 9 5 | cfv | |
11 | 7 10 8 | co | |
12 | vx | |
|
13 | vy | |
|
14 | 4 | cv | |
15 | 12 | cv | |
16 | cplusg | |
|
17 | 9 16 | cfv | |
18 | 13 | cv | |
19 | 15 18 17 | co | |
20 | 19 14 | cfv | |
21 | 15 14 | cfv | |
22 | 6 16 | cfv | |
23 | 18 14 | cfv | |
24 | 21 23 22 | co | |
25 | 20 24 | wceq | |
26 | 25 13 10 | wral | |
27 | 26 12 10 | wral | |
28 | 27 4 11 | crab | |
29 | 1 3 2 2 28 | cmpo | |
30 | 0 29 | wceq | |