Description: Reverse closure of a magma homomorphism. (Contributed by AV, 24-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | mgmhmrcl | |- ( F e. ( S MgmHom T ) -> ( S e. Mgm /\ T e. Mgm ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mgmhm | |- MgmHom = ( s e. Mgm , t e. Mgm |-> { f e. ( ( Base ` t ) ^m ( Base ` s ) ) | A. x e. ( Base ` s ) A. y e. ( Base ` s ) ( f ` ( x ( +g ` s ) y ) ) = ( ( f ` x ) ( +g ` t ) ( f ` y ) ) } ) |
|
2 | 1 | elmpocl | |- ( F e. ( S MgmHom T ) -> ( S e. Mgm /\ T e. Mgm ) ) |