| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mgmhmf1o.b |  | 
						
							| 2 |  | mgmhmf1o.c |  | 
						
							| 3 |  | mgmhmrcl |  | 
						
							| 4 | 3 | ancomd |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 |  | f1ocnv |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 |  | f1of |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 |  | simpll |  | 
						
							| 11 | 9 | adantr |  | 
						
							| 12 |  | simprl |  | 
						
							| 13 | 11 12 | ffvelcdmd |  | 
						
							| 14 |  | simprr |  | 
						
							| 15 | 11 14 | ffvelcdmd |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 1 16 17 | mgmhmlin |  | 
						
							| 19 | 10 13 15 18 | syl3anc |  | 
						
							| 20 |  | simplr |  | 
						
							| 21 |  | f1ocnvfv2 |  | 
						
							| 22 | 20 12 21 | syl2anc |  | 
						
							| 23 |  | f1ocnvfv2 |  | 
						
							| 24 | 20 14 23 | syl2anc |  | 
						
							| 25 | 22 24 | oveq12d |  | 
						
							| 26 | 19 25 | eqtrd |  | 
						
							| 27 | 3 | simpld |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 1 16 | mgmcl |  | 
						
							| 31 | 29 13 15 30 | syl3anc |  | 
						
							| 32 |  | f1ocnvfv |  | 
						
							| 33 | 20 31 32 | syl2anc |  | 
						
							| 34 | 26 33 | mpd |  | 
						
							| 35 | 34 | ralrimivva |  | 
						
							| 36 | 9 35 | jca |  | 
						
							| 37 | 2 1 17 16 | ismgmhm |  | 
						
							| 38 | 5 36 37 | sylanbrc |  | 
						
							| 39 | 1 2 | mgmhmf |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 40 | ffnd |  | 
						
							| 42 | 2 1 | mgmhmf |  | 
						
							| 43 | 42 | adantl |  | 
						
							| 44 | 43 | ffnd |  | 
						
							| 45 |  | dff1o4 |  | 
						
							| 46 | 41 44 45 | sylanbrc |  | 
						
							| 47 | 38 46 | impbida |  |