Metamath Proof Explorer


Theorem idmgmhm

Description: The identity homomorphism on a magma. (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypothesis idmgmhm.b B = Base M
Assertion idmgmhm M Mgm I B M MgmHom M

Proof

Step Hyp Ref Expression
1 idmgmhm.b B = Base M
2 id M Mgm M Mgm
3 2 ancri M Mgm M Mgm M Mgm
4 f1oi I B : B 1-1 onto B
5 f1of I B : B 1-1 onto B I B : B B
6 4 5 mp1i M Mgm I B : B B
7 eqid + M = + M
8 1 7 mgmcl M Mgm a B b B a + M b B
9 8 3expb M Mgm a B b B a + M b B
10 fvresi a + M b B I B a + M b = a + M b
11 9 10 syl M Mgm a B b B I B a + M b = a + M b
12 fvresi a B I B a = a
13 fvresi b B I B b = b
14 12 13 oveqan12d a B b B I B a + M I B b = a + M b
15 14 adantl M Mgm a B b B I B a + M I B b = a + M b
16 11 15 eqtr4d M Mgm a B b B I B a + M b = I B a + M I B b
17 16 ralrimivva M Mgm a B b B I B a + M b = I B a + M I B b
18 6 17 jca M Mgm I B : B B a B b B I B a + M b = I B a + M I B b
19 1 1 7 7 ismgmhm I B M MgmHom M M Mgm M Mgm I B : B B a B b B I B a + M b = I B a + M I B b
20 3 18 19 sylanbrc M Mgm I B M MgmHom M