Metamath Proof Explorer


Definition df-rngohom

Description: Define the function which gives the set of ring homomorphisms between two given rings. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Assertion df-rngohom RngHom=rRingOps,sRingOpsfran1stsran1str|fGId2ndr=GId2ndsxran1stryran1strfx1stry=fx1stsfyfx2ndry=fx2ndsfy

Detailed syntax breakdown

Step Hyp Ref Expression
0 crnghom classRngHom
1 vr setvarr
2 crngo classRingOps
3 vs setvars
4 vf setvarf
5 c1st class1st
6 3 cv setvars
7 6 5 cfv class1sts
8 7 crn classran1sts
9 cmap class𝑚
10 1 cv setvarr
11 10 5 cfv class1str
12 11 crn classran1str
13 8 12 9 co classran1stsran1str
14 4 cv setvarf
15 cgi classGId
16 c2nd class2nd
17 10 16 cfv class2ndr
18 17 15 cfv classGId2ndr
19 18 14 cfv classfGId2ndr
20 6 16 cfv class2nds
21 20 15 cfv classGId2nds
22 19 21 wceq wfffGId2ndr=GId2nds
23 vx setvarx
24 vy setvary
25 23 cv setvarx
26 24 cv setvary
27 25 26 11 co classx1stry
28 27 14 cfv classfx1stry
29 25 14 cfv classfx
30 26 14 cfv classfy
31 29 30 7 co classfx1stsfy
32 28 31 wceq wfffx1stry=fx1stsfy
33 25 26 17 co classx2ndry
34 33 14 cfv classfx2ndry
35 29 30 20 co classfx2ndsfy
36 34 35 wceq wfffx2ndry=fx2ndsfy
37 32 36 wa wfffx1stry=fx1stsfyfx2ndry=fx2ndsfy
38 37 24 12 wral wffyran1strfx1stry=fx1stsfyfx2ndry=fx2ndsfy
39 38 23 12 wral wffxran1stryran1strfx1stry=fx1stsfyfx2ndry=fx2ndsfy
40 22 39 wa wfffGId2ndr=GId2ndsxran1stryran1strfx1stry=fx1stsfyfx2ndry=fx2ndsfy
41 40 4 13 crab classfran1stsran1str|fGId2ndr=GId2ndsxran1stryran1strfx1stry=fx1stsfyfx2ndry=fx2ndsfy
42 1 3 2 2 41 cmpo classrRingOps,sRingOpsfran1stsran1str|fGId2ndr=GId2ndsxran1stryran1strfx1stry=fx1stsfyfx2ndry=fx2ndsfy
43 0 42 wceq wffRngHom=rRingOps,sRingOpsfran1stsran1str|fGId2ndr=GId2ndsxran1stryran1strfx1stry=fx1stsfyfx2ndry=fx2ndsfy