Metamath Proof Explorer


Theorem rhmsubcrngclem1

Description: Lemma 1 for rhmsubcrngc . (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses rhmsubcrngc.c C = RngCat U
rhmsubcrngc.u φ U V
rhmsubcrngc.b φ B = Ring U
rhmsubcrngc.h φ H = RingHom B × B
Assertion rhmsubcrngclem1 φ x B Id C x x H x

Proof

Step Hyp Ref Expression
1 rhmsubcrngc.c C = RngCat U
2 rhmsubcrngc.u φ U V
3 rhmsubcrngc.b φ B = Ring U
4 rhmsubcrngc.h φ H = RingHom B × B
5 3 eleq2d φ x B x Ring U
6 elin x Ring U x Ring x U
7 6 simplbi x Ring U x Ring
8 5 7 syl6bi φ x B x Ring
9 8 imp φ x B x Ring
10 eqid Base x = Base x
11 10 idrhm x Ring I Base x x RingHom x
12 9 11 syl φ x B I Base x x RingHom x
13 eqid Base C = Base C
14 eqid Id C = Id C
15 2 adantr φ x B U V
16 ringrng x Ring x Rng
17 16 anim2i x U x Ring x U x Rng
18 17 ancoms x Ring x U x U x Rng
19 6 18 sylbi x Ring U x U x Rng
20 19 adantl φ x Ring U x U x Rng
21 elin x U Rng x U x Rng
22 20 21 sylibr φ x Ring U x U Rng
23 1 13 2 rngcbas φ Base C = U Rng
24 23 adantr φ x Ring U Base C = U Rng
25 22 24 eleqtrrd φ x Ring U x Base C
26 25 ex φ x Ring U x Base C
27 5 26 sylbid φ x B x Base C
28 27 imp φ x B x Base C
29 1 13 14 15 28 10 rngcid φ x B Id C x = I Base x
30 4 oveqdr φ x B x H x = x RingHom B × B x
31 eqid RingCat U = RingCat U
32 eqid Base RingCat U = Base RingCat U
33 eqid Hom RingCat U = Hom RingCat U
34 31 32 2 33 ringchomfval φ Hom RingCat U = RingHom Base RingCat U × Base RingCat U
35 31 32 2 ringcbas φ Base RingCat U = U Ring
36 incom Ring U = U Ring
37 3 36 eqtrdi φ B = U Ring
38 37 eqcomd φ U Ring = B
39 35 38 eqtrd φ Base RingCat U = B
40 39 sqxpeqd φ Base RingCat U × Base RingCat U = B × B
41 40 reseq2d φ RingHom Base RingCat U × Base RingCat U = RingHom B × B
42 34 41 eqtrd φ Hom RingCat U = RingHom B × B
43 42 adantr φ x B Hom RingCat U = RingHom B × B
44 43 eqcomd φ x B RingHom B × B = Hom RingCat U
45 44 oveqd φ x B x RingHom B × B x = x Hom RingCat U x
46 37 eleq2d φ x B x U Ring
47 46 biimpa φ x B x U Ring
48 35 adantr φ x B Base RingCat U = U Ring
49 47 48 eleqtrrd φ x B x Base RingCat U
50 31 32 15 33 49 49 ringchom φ x B x Hom RingCat U x = x RingHom x
51 30 45 50 3eqtrd φ x B x H x = x RingHom x
52 12 29 51 3eltr4d φ x B Id C x x H x