Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsubcrngc.c |
|
2 |
|
rhmsubcrngc.u |
|
3 |
|
rhmsubcrngc.b |
|
4 |
|
rhmsubcrngc.h |
|
5 |
3
|
eleq2d |
|
6 |
|
elin |
|
7 |
6
|
simplbi |
|
8 |
5 7
|
syl6bi |
|
9 |
8
|
imp |
|
10 |
|
eqid |
|
11 |
10
|
idrhm |
|
12 |
9 11
|
syl |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
2
|
adantr |
|
16 |
|
ringrng |
|
17 |
16
|
anim2i |
|
18 |
17
|
ancoms |
|
19 |
6 18
|
sylbi |
|
20 |
19
|
adantl |
|
21 |
|
elin |
|
22 |
20 21
|
sylibr |
|
23 |
1 13 2
|
rngcbas |
|
24 |
23
|
adantr |
|
25 |
22 24
|
eleqtrrd |
|
26 |
25
|
ex |
|
27 |
5 26
|
sylbid |
|
28 |
27
|
imp |
|
29 |
1 13 14 15 28 10
|
rngcid |
|
30 |
4
|
oveqdr |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
31 32 2 33
|
ringchomfval |
|
35 |
31 32 2
|
ringcbas |
|
36 |
|
incom |
|
37 |
3 36
|
eqtrdi |
|
38 |
37
|
eqcomd |
|
39 |
35 38
|
eqtrd |
|
40 |
39
|
sqxpeqd |
|
41 |
40
|
reseq2d |
|
42 |
34 41
|
eqtrd |
|
43 |
42
|
adantr |
|
44 |
43
|
eqcomd |
|
45 |
44
|
oveqd |
|
46 |
37
|
eleq2d |
|
47 |
46
|
biimpa |
|
48 |
35
|
adantr |
|
49 |
47 48
|
eleqtrrd |
|
50 |
31 32 15 33 49 49
|
ringchom |
|
51 |
30 45 50
|
3eqtrd |
|
52 |
12 29 51
|
3eltr4d |
|