Metamath Proof Explorer


Theorem rhmsubcrngc

Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of non-unital rings. (Contributed by AV, 12-Mar-2020)

Ref Expression
Hypotheses rhmsubcrngc.c C = RngCat U
rhmsubcrngc.u φ U V
rhmsubcrngc.b φ B = Ring U
rhmsubcrngc.h φ H = RingHom B × B
Assertion rhmsubcrngc φ H Subcat C

Proof

Step Hyp Ref Expression
1 rhmsubcrngc.c C = RngCat U
2 rhmsubcrngc.u φ U V
3 rhmsubcrngc.b φ B = Ring U
4 rhmsubcrngc.h φ H = RingHom B × B
5 eqid RngCat U = RngCat U
6 eqid Base RngCat U = Base RngCat U
7 5 6 2 rngcbas φ Base RngCat U = U Rng
8 incom U Rng = Rng U
9 7 8 eqtrdi φ Base RngCat U = Rng U
10 2 3 9 rhmsscrnghm φ RingHom B × B cat RngHomo Base RngCat U × Base RngCat U
11 1 a1i φ C = RngCat U
12 11 fveq2d φ Base C = Base RngCat U
13 12 sqxpeqd φ Base C × Base C = Base RngCat U × Base RngCat U
14 13 reseq2d φ RngHomo Base C × Base C = RngHomo Base RngCat U × Base RngCat U
15 10 14 breqtrrd φ RingHom B × B cat RngHomo Base C × Base C
16 eqid Base C = Base C
17 1 16 2 rngchomfeqhom φ Hom 𝑓 C = Hom C
18 eqid Hom C = Hom C
19 1 16 2 18 rngchomfval φ Hom C = RngHomo Base C × Base C
20 17 19 eqtrd φ Hom 𝑓 C = RngHomo Base C × Base C
21 15 4 20 3brtr4d φ H cat Hom 𝑓 C
22 1 2 3 4 rhmsubcrngclem1 φ x B Id C x x H x
23 1 2 3 4 rhmsubcrngclem2 φ x B y B z B f x H y g y H z g x y comp C z f x H z
24 22 23 jca φ x B Id C x x H x y B z B f x H y g y H z g x y comp C z f x H z
25 24 ralrimiva φ x B Id C x x H x y B z B f x H y g y H z g x y comp C z f x H z
26 eqid Hom 𝑓 C = Hom 𝑓 C
27 eqid Id C = Id C
28 eqid comp C = comp C
29 1 rngccat U V C Cat
30 2 29 syl φ C Cat
31 incom Ring U = U Ring
32 3 31 eqtrdi φ B = U Ring
33 32 4 rhmresfn φ H Fn B × B
34 26 27 28 30 33 issubc2 φ H Subcat C H cat Hom 𝑓 C x B Id C x x H x y B z B f x H y g y H z g x y comp C z f x H z
35 21 25 34 mpbir2and φ H Subcat C