Metamath Proof Explorer


Theorem rngchomfeqhom

Description: The functionalized Hom-set operation equals the Hom-set operation in the category of non-unital rings (in a universe). (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses rngcbas.c C = RngCat U
rngcbas.b B = Base C
rngcbas.u φ U V
Assertion rngchomfeqhom φ Hom 𝑓 C = Hom C

Proof

Step Hyp Ref Expression
1 rngcbas.c C = RngCat U
2 rngcbas.b B = Base C
3 rngcbas.u φ U V
4 1 2 3 rngcbas φ B = U Rng
5 eqid Hom C = Hom C
6 1 2 3 5 rngchomfval φ Hom C = RngHomo B × B
7 4 6 rnghmresfn φ Hom C Fn B × B
8 eqid Hom 𝑓 C = Hom 𝑓 C
9 8 2 5 fnhomeqhomf Hom C Fn B × B Hom 𝑓 C = Hom C
10 7 9 syl φ Hom 𝑓 C = Hom C