Description: The functionalized Hom-set operation equals the Hom-set operation in the category of non-unital rings (in a universe). (Contributed by AV, 9-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngcbas.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
rngcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
rngcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
Assertion | rngchomfeqhom | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcbas.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
2 | rngcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
3 | rngcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
4 | 1 2 3 | rngcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
5 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
6 | 1 2 3 5 | rngchomfval | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) ) |
7 | 4 6 | rnghmresfn | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ) |
8 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
9 | 8 2 5 | fnhomeqhomf | ⊢ ( ( Hom ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) → ( Homf ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
10 | 7 9 | syl | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |