Step |
Hyp |
Ref |
Expression |
1 |
|
rnghmresfn.b |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
2 |
|
rnghmresfn.h |
⊢ ( 𝜑 → 𝐻 = ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) ) |
3 |
|
rnghmfn |
⊢ RngHomo Fn ( Rng × Rng ) |
4 |
|
inss2 |
⊢ ( 𝑈 ∩ Rng ) ⊆ Rng |
5 |
1 4
|
eqsstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ Rng ) |
6 |
|
xpss12 |
⊢ ( ( 𝐵 ⊆ Rng ∧ 𝐵 ⊆ Rng ) → ( 𝐵 × 𝐵 ) ⊆ ( Rng × Rng ) ) |
7 |
5 5 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) ⊆ ( Rng × Rng ) ) |
8 |
|
fnssres |
⊢ ( ( RngHomo Fn ( Rng × Rng ) ∧ ( 𝐵 × 𝐵 ) ⊆ ( Rng × Rng ) ) → ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) |
9 |
3 7 8
|
sylancr |
⊢ ( 𝜑 → ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) |
10 |
2
|
fneq1d |
⊢ ( 𝜑 → ( 𝐻 Fn ( 𝐵 × 𝐵 ) ↔ ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) ) |
11 |
9 10
|
mpbird |
⊢ ( 𝜑 → 𝐻 Fn ( 𝐵 × 𝐵 ) ) |