Metamath Proof Explorer


Theorem rngccofval

Description: Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses rngcco.c C=RngCatU
rngcco.u φUV
rngcco.o ·˙=compC
Assertion rngccofval φ·˙=compExtStrCatU

Proof

Step Hyp Ref Expression
1 rngcco.c C=RngCatU
2 rngcco.u φUV
3 rngcco.o ·˙=compC
4 eqid BaseC=BaseC
5 1 4 2 rngcbas φBaseC=URng
6 eqid HomC=HomC
7 1 4 2 6 rngchomfval φHomC=RngHomoBaseC×BaseC
8 1 2 5 7 rngcval φC=ExtStrCatUcatHomC
9 8 fveq2d φcompC=compExtStrCatUcatHomC
10 3 a1i φ·˙=compC
11 eqid ExtStrCatUcatHomC=ExtStrCatUcatHomC
12 eqid BaseExtStrCatU=BaseExtStrCatU
13 fvexd φExtStrCatUV
14 5 7 rnghmresfn φHomCFnBaseC×BaseC
15 inss1 URngU
16 15 a1i φURngU
17 eqid ExtStrCatU=ExtStrCatU
18 17 2 estrcbas φU=BaseExtStrCatU
19 18 eqcomd φBaseExtStrCatU=U
20 16 5 19 3sstr4d φBaseCBaseExtStrCatU
21 eqid compExtStrCatU=compExtStrCatU
22 11 12 13 14 20 21 rescco φcompExtStrCatU=compExtStrCatUcatHomC
23 9 10 22 3eqtr4d φ·˙=compExtStrCatU