Metamath Proof Explorer


Theorem rngcco

Description: Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses rngcco.c C=RngCatU
rngcco.u φUV
rngcco.o ·˙=compC
rngcco.x φXU
rngcco.y φYU
rngcco.z φZU
rngcco.f φF:BaseXBaseY
rngcco.g φG:BaseYBaseZ
Assertion rngcco φGXY·˙ZF=GF

Proof

Step Hyp Ref Expression
1 rngcco.c C=RngCatU
2 rngcco.u φUV
3 rngcco.o ·˙=compC
4 rngcco.x φXU
5 rngcco.y φYU
6 rngcco.z φZU
7 rngcco.f φF:BaseXBaseY
8 rngcco.g φG:BaseYBaseZ
9 1 2 3 rngccofval φ·˙=compExtStrCatU
10 9 oveqd φXY·˙Z=XYcompExtStrCatUZ
11 10 oveqd φGXY·˙ZF=GXYcompExtStrCatUZF
12 eqid ExtStrCatU=ExtStrCatU
13 eqid compExtStrCatU=compExtStrCatU
14 eqid BaseX=BaseX
15 eqid BaseY=BaseY
16 eqid BaseZ=BaseZ
17 12 2 13 4 5 6 14 15 16 7 8 estrcco φGXYcompExtStrCatUZF=GF
18 11 17 eqtrd φGXY·˙ZF=GF