Metamath Proof Explorer


Theorem rngcco

Description: Composition in the category of non-unital rings. (Contributed by AV, 27-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses rngcco.c C = RngCat U
rngcco.u φ U V
rngcco.o · ˙ = comp C
rngcco.x φ X U
rngcco.y φ Y U
rngcco.z φ Z U
rngcco.f φ F : Base X Base Y
rngcco.g φ G : Base Y Base Z
Assertion rngcco φ G X Y · ˙ Z F = G F

Proof

Step Hyp Ref Expression
1 rngcco.c C = RngCat U
2 rngcco.u φ U V
3 rngcco.o · ˙ = comp C
4 rngcco.x φ X U
5 rngcco.y φ Y U
6 rngcco.z φ Z U
7 rngcco.f φ F : Base X Base Y
8 rngcco.g φ G : Base Y Base Z
9 1 2 3 rngccofval φ · ˙ = comp ExtStrCat U
10 9 oveqd φ X Y · ˙ Z = X Y comp ExtStrCat U Z
11 10 oveqd φ G X Y · ˙ Z F = G X Y comp ExtStrCat U Z F
12 eqid ExtStrCat U = ExtStrCat U
13 eqid comp ExtStrCat U = comp ExtStrCat U
14 eqid Base X = Base X
15 eqid Base Y = Base Y
16 eqid Base Z = Base Z
17 12 2 13 4 5 6 14 15 16 7 8 estrcco φ G X Y comp ExtStrCat U Z F = G F
18 11 17 eqtrd φ G X Y · ˙ Z F = G F