Metamath Proof Explorer


Theorem rescco

Description: Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 13-Oct-2024)

Ref Expression
Hypotheses rescbas.d D=CcatH
rescbas.b B=BaseC
rescbas.c φCV
rescbas.h φHFnS×S
rescbas.s φSB
rescco.o ·˙=compC
Assertion rescco φ·˙=compD

Proof

Step Hyp Ref Expression
1 rescbas.d D=CcatH
2 rescbas.b B=BaseC
3 rescbas.c φCV
4 rescbas.h φHFnS×S
5 rescbas.s φSB
6 rescco.o ·˙=compC
7 ccoid comp=Slotcompndx
8 slotsbhcdif BasendxHomndxBasendxcompndxHomndxcompndx
9 simp3 BasendxHomndxBasendxcompndxHomndxcompndxHomndxcompndx
10 9 necomd BasendxHomndxBasendxcompndxHomndxcompndxcompndxHomndx
11 8 10 ax-mp compndxHomndx
12 7 11 setsnid compC𝑠S=compC𝑠SsSetHomndxH
13 2 fvexi BV
14 13 ssex SBSV
15 5 14 syl φSV
16 eqid C𝑠S=C𝑠S
17 16 6 ressco SV·˙=compC𝑠S
18 15 17 syl φ·˙=compC𝑠S
19 1 3 15 4 rescval2 φD=C𝑠SsSetHomndxH
20 19 fveq2d φcompD=compC𝑠SsSetHomndxH
21 12 18 20 3eqtr4a φ·˙=compD