Metamath Proof Explorer


Theorem rngchomfval

Description: Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses rngcbas.c C = RngCat U
rngcbas.b B = Base C
rngcbas.u φ U V
rngchomfval.h H = Hom C
Assertion rngchomfval φ H = RngHomo B × B

Proof

Step Hyp Ref Expression
1 rngcbas.c C = RngCat U
2 rngcbas.b B = Base C
3 rngcbas.u φ U V
4 rngchomfval.h H = Hom C
5 1 2 3 rngcbas φ B = U Rng
6 eqidd φ RngHomo B × B = RngHomo B × B
7 1 3 5 6 rngcval φ C = ExtStrCat U cat RngHomo B × B
8 7 fveq2d φ Hom C = Hom ExtStrCat U cat RngHomo B × B
9 4 8 syl5eq φ H = Hom ExtStrCat U cat RngHomo B × B
10 eqid ExtStrCat U cat RngHomo B × B = ExtStrCat U cat RngHomo B × B
11 eqid Base ExtStrCat U = Base ExtStrCat U
12 fvexd φ ExtStrCat U V
13 5 6 rnghmresfn φ RngHomo B × B Fn B × B
14 inss1 U Rng U
15 14 a1i φ U Rng U
16 eqid ExtStrCat U = ExtStrCat U
17 16 3 estrcbas φ U = Base ExtStrCat U
18 17 eqcomd φ Base ExtStrCat U = U
19 15 5 18 3sstr4d φ B Base ExtStrCat U
20 10 11 12 13 19 reschom φ RngHomo B × B = Hom ExtStrCat U cat RngHomo B × B
21 9 20 eqtr4d φ H = RngHomo B × B