Metamath Proof Explorer


Theorem rngchomfval

Description: Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020) (Revised by AV, 8-Mar-2020)

Ref Expression
Hypotheses rngcbas.c C=RngCatU
rngcbas.b B=BaseC
rngcbas.u φUV
rngchomfval.h H=HomC
Assertion rngchomfval φH=RngHomoB×B

Proof

Step Hyp Ref Expression
1 rngcbas.c C=RngCatU
2 rngcbas.b B=BaseC
3 rngcbas.u φUV
4 rngchomfval.h H=HomC
5 1 2 3 rngcbas φB=URng
6 eqidd φRngHomoB×B=RngHomoB×B
7 1 3 5 6 rngcval φC=ExtStrCatUcatRngHomoB×B
8 7 fveq2d φHomC=HomExtStrCatUcatRngHomoB×B
9 4 8 eqtrid φH=HomExtStrCatUcatRngHomoB×B
10 eqid ExtStrCatUcatRngHomoB×B=ExtStrCatUcatRngHomoB×B
11 eqid BaseExtStrCatU=BaseExtStrCatU
12 fvexd φExtStrCatUV
13 5 6 rnghmresfn φRngHomoB×BFnB×B
14 inss1 URngU
15 14 a1i φURngU
16 eqid ExtStrCatU=ExtStrCatU
17 16 3 estrcbas φU=BaseExtStrCatU
18 17 eqcomd φBaseExtStrCatU=U
19 15 5 18 3sstr4d φBBaseExtStrCatU
20 10 11 12 13 19 reschom φRngHomoB×B=HomExtStrCatUcatRngHomoB×B
21 9 20 eqtr4d φH=RngHomoB×B