Metamath Proof Explorer


Theorem rngchom

Description: Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbas.c C = RngCat U
rngcbas.b B = Base C
rngcbas.u φ U V
rngchomfval.h H = Hom C
rngchom.x φ X B
rngchom.y φ Y B
Assertion rngchom φ X H Y = X RngHomo Y

Proof

Step Hyp Ref Expression
1 rngcbas.c C = RngCat U
2 rngcbas.b B = Base C
3 rngcbas.u φ U V
4 rngchomfval.h H = Hom C
5 rngchom.x φ X B
6 rngchom.y φ Y B
7 1 2 3 4 rngchomfval φ H = RngHomo B × B
8 7 oveqd φ X H Y = X RngHomo B × B Y
9 5 6 ovresd φ X RngHomo B × B Y = X RngHomo Y
10 8 9 eqtrd φ X H Y = X RngHomo Y