Metamath Proof Explorer


Theorem rngchom

Description: Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbas.c
|- C = ( RngCat ` U )
rngcbas.b
|- B = ( Base ` C )
rngcbas.u
|- ( ph -> U e. V )
rngchomfval.h
|- H = ( Hom ` C )
rngchom.x
|- ( ph -> X e. B )
rngchom.y
|- ( ph -> Y e. B )
Assertion rngchom
|- ( ph -> ( X H Y ) = ( X RngHomo Y ) )

Proof

Step Hyp Ref Expression
1 rngcbas.c
 |-  C = ( RngCat ` U )
2 rngcbas.b
 |-  B = ( Base ` C )
3 rngcbas.u
 |-  ( ph -> U e. V )
4 rngchomfval.h
 |-  H = ( Hom ` C )
5 rngchom.x
 |-  ( ph -> X e. B )
6 rngchom.y
 |-  ( ph -> Y e. B )
7 1 2 3 4 rngchomfval
 |-  ( ph -> H = ( RngHomo |` ( B X. B ) ) )
8 7 oveqd
 |-  ( ph -> ( X H Y ) = ( X ( RngHomo |` ( B X. B ) ) Y ) )
9 5 6 ovresd
 |-  ( ph -> ( X ( RngHomo |` ( B X. B ) ) Y ) = ( X RngHomo Y ) )
10 8 9 eqtrd
 |-  ( ph -> ( X H Y ) = ( X RngHomo Y ) )