Description: Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rngcbas.c | |- C = ( RngCat ` U ) |
|
rngcbas.b | |- B = ( Base ` C ) |
||
rngcbas.u | |- ( ph -> U e. V ) |
||
rngchomfval.h | |- H = ( Hom ` C ) |
||
rngchom.x | |- ( ph -> X e. B ) |
||
rngchom.y | |- ( ph -> Y e. B ) |
||
Assertion | rngchom | |- ( ph -> ( X H Y ) = ( X RngHomo Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngcbas.c | |- C = ( RngCat ` U ) |
|
2 | rngcbas.b | |- B = ( Base ` C ) |
|
3 | rngcbas.u | |- ( ph -> U e. V ) |
|
4 | rngchomfval.h | |- H = ( Hom ` C ) |
|
5 | rngchom.x | |- ( ph -> X e. B ) |
|
6 | rngchom.y | |- ( ph -> Y e. B ) |
|
7 | 1 2 3 4 | rngchomfval | |- ( ph -> H = ( RngHomo |` ( B X. B ) ) ) |
8 | 7 | oveqd | |- ( ph -> ( X H Y ) = ( X ( RngHomo |` ( B X. B ) ) Y ) ) |
9 | 5 6 | ovresd | |- ( ph -> ( X ( RngHomo |` ( B X. B ) ) Y ) = ( X RngHomo Y ) ) |
10 | 8 9 | eqtrd | |- ( ph -> ( X H Y ) = ( X RngHomo Y ) ) |