Metamath Proof Explorer


Theorem rngchom

Description: Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbas.c 𝐶 = ( RngCat ‘ 𝑈 )
rngcbas.b 𝐵 = ( Base ‘ 𝐶 )
rngcbas.u ( 𝜑𝑈𝑉 )
rngchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
rngchom.x ( 𝜑𝑋𝐵 )
rngchom.y ( 𝜑𝑌𝐵 )
Assertion rngchom ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RngHomo 𝑌 ) )

Proof

Step Hyp Ref Expression
1 rngcbas.c 𝐶 = ( RngCat ‘ 𝑈 )
2 rngcbas.b 𝐵 = ( Base ‘ 𝐶 )
3 rngcbas.u ( 𝜑𝑈𝑉 )
4 rngchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
5 rngchom.x ( 𝜑𝑋𝐵 )
6 rngchom.y ( 𝜑𝑌𝐵 )
7 1 2 3 4 rngchomfval ( 𝜑𝐻 = ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) )
8 7 oveqd ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) )
9 5 6 ovresd ( 𝜑 → ( 𝑋 ( RngHomo ↾ ( 𝐵 × 𝐵 ) ) 𝑌 ) = ( 𝑋 RngHomo 𝑌 ) )
10 8 9 eqtrd ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 RngHomo 𝑌 ) )