Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsubcrngc.c |
⊢ 𝐶 = ( RngCat ‘ 𝑈 ) |
2 |
|
rhmsubcrngc.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
rhmsubcrngc.b |
⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) |
4 |
|
rhmsubcrngc.h |
⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
5 |
|
eqid |
⊢ ( RngCat ‘ 𝑈 ) = ( RngCat ‘ 𝑈 ) |
6 |
|
eqid |
⊢ ( Base ‘ ( RngCat ‘ 𝑈 ) ) = ( Base ‘ ( RngCat ‘ 𝑈 ) ) |
7 |
5 6 2
|
rngcbas |
⊢ ( 𝜑 → ( Base ‘ ( RngCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Rng ) ) |
8 |
|
incom |
⊢ ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) |
9 |
7 8
|
eqtrdi |
⊢ ( 𝜑 → ( Base ‘ ( RngCat ‘ 𝑈 ) ) = ( Rng ∩ 𝑈 ) ) |
10 |
2 3 9
|
rhmsscrnghm |
⊢ ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ⊆cat ( RngHomo ↾ ( ( Base ‘ ( RngCat ‘ 𝑈 ) ) × ( Base ‘ ( RngCat ‘ 𝑈 ) ) ) ) ) |
11 |
1
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( RngCat ‘ 𝑈 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ ( RngCat ‘ 𝑈 ) ) ) |
13 |
12
|
sqxpeqd |
⊢ ( 𝜑 → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) = ( ( Base ‘ ( RngCat ‘ 𝑈 ) ) × ( Base ‘ ( RngCat ‘ 𝑈 ) ) ) ) |
14 |
13
|
reseq2d |
⊢ ( 𝜑 → ( RngHomo ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) = ( RngHomo ↾ ( ( Base ‘ ( RngCat ‘ 𝑈 ) ) × ( Base ‘ ( RngCat ‘ 𝑈 ) ) ) ) ) |
15 |
10 14
|
breqtrrd |
⊢ ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ⊆cat ( RngHomo ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
17 |
1 16 2
|
rngchomfeqhom |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
18 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
19 |
1 16 2 18
|
rngchomfval |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( RngHomo ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
20 |
17 19
|
eqtrd |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( RngHomo ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
21 |
15 4 20
|
3brtr4d |
⊢ ( 𝜑 → 𝐻 ⊆cat ( Homf ‘ 𝐶 ) ) |
22 |
1 2 3 4
|
rhmsubcrngclem1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |
23 |
1 2 3 4
|
rhmsubcrngclem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
24 |
22 23
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
25 |
24
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
26 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
27 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
28 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
29 |
1
|
rngccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
30 |
2 29
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
31 |
|
incom |
⊢ ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring ) |
32 |
3 31
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
33 |
32 4
|
rhmresfn |
⊢ ( 𝜑 → 𝐻 Fn ( 𝐵 × 𝐵 ) ) |
34 |
26 27 28 30 33
|
issubc2 |
⊢ ( 𝜑 → ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐻 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) ) |
35 |
21 25 34
|
mpbir2and |
⊢ ( 𝜑 → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |