| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rngccat.c |
⊢ 𝐶 = ( RngCat ‘ 𝑈 ) |
| 2 |
|
id |
⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ 𝑉 ) |
| 3 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Rng ) = ( 𝑈 ∩ Rng ) ) |
| 4 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑉 → ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) = ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) |
| 5 |
1 2 3 4
|
rngcval |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) ) |
| 6 |
|
eqid |
⊢ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) |
| 7 |
|
eqid |
⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) |
| 8 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑉 → ( Rng ∩ 𝑈 ) = ( Rng ∩ 𝑈 ) ) |
| 9 |
|
incom |
⊢ ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) |
| 10 |
9
|
a1i |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) ) |
| 11 |
10
|
sqxpeqd |
⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) = ( ( Rng ∩ 𝑈 ) × ( Rng ∩ 𝑈 ) ) ) |
| 12 |
11
|
reseq2d |
⊢ ( 𝑈 ∈ 𝑉 → ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) = ( RngHom ↾ ( ( Rng ∩ 𝑈 ) × ( Rng ∩ 𝑈 ) ) ) ) |
| 13 |
7 2 8 12
|
rnghmsubcsetc |
⊢ ( 𝑈 ∈ 𝑉 → ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ∈ ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 14 |
6 13
|
subccat |
⊢ ( 𝑈 ∈ 𝑉 → ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) ∈ Cat ) |
| 15 |
5 14
|
eqeltrd |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |