Step |
Hyp |
Ref |
Expression |
1 |
|
rngccat.c |
|- C = ( RngCat ` U ) |
2 |
|
id |
|- ( U e. V -> U e. V ) |
3 |
|
eqidd |
|- ( U e. V -> ( U i^i Rng ) = ( U i^i Rng ) ) |
4 |
|
eqidd |
|- ( U e. V -> ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) = ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) |
5 |
1 2 3 4
|
rngcval |
|- ( U e. V -> C = ( ( ExtStrCat ` U ) |`cat ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) ) |
6 |
|
eqid |
|- ( ( ExtStrCat ` U ) |`cat ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) = ( ( ExtStrCat ` U ) |`cat ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) |
7 |
|
eqid |
|- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
8 |
|
eqidd |
|- ( U e. V -> ( Rng i^i U ) = ( Rng i^i U ) ) |
9 |
|
incom |
|- ( U i^i Rng ) = ( Rng i^i U ) |
10 |
9
|
a1i |
|- ( U e. V -> ( U i^i Rng ) = ( Rng i^i U ) ) |
11 |
10
|
sqxpeqd |
|- ( U e. V -> ( ( U i^i Rng ) X. ( U i^i Rng ) ) = ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) |
12 |
11
|
reseq2d |
|- ( U e. V -> ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) = ( RngHomo |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) ) |
13 |
7 2 8 12
|
rnghmsubcsetc |
|- ( U e. V -> ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) e. ( Subcat ` ( ExtStrCat ` U ) ) ) |
14 |
6 13
|
subccat |
|- ( U e. V -> ( ( ExtStrCat ` U ) |`cat ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) e. Cat ) |
15 |
5 14
|
eqeltrd |
|- ( U e. V -> C e. Cat ) |