| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rnghmsubcsetc.c |
|- C = ( ExtStrCat ` U ) |
| 2 |
|
rnghmsubcsetc.u |
|- ( ph -> U e. V ) |
| 3 |
|
rnghmsubcsetc.b |
|- ( ph -> B = ( Rng i^i U ) ) |
| 4 |
|
rnghmsubcsetc.h |
|- ( ph -> H = ( RngHom |` ( B X. B ) ) ) |
| 5 |
2 3
|
rnghmsscmap |
|- ( ph -> ( RngHom |` ( B X. B ) ) C_cat ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 6 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 7 |
1 2 6
|
estrchomfeqhom |
|- ( ph -> ( Homf ` C ) = ( Hom ` C ) ) |
| 8 |
1 2 6
|
estrchomfval |
|- ( ph -> ( Hom ` C ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 9 |
7 8
|
eqtrd |
|- ( ph -> ( Homf ` C ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
| 10 |
5 4 9
|
3brtr4d |
|- ( ph -> H C_cat ( Homf ` C ) ) |
| 11 |
1 2 3 4
|
rnghmsubcsetclem1 |
|- ( ( ph /\ x e. B ) -> ( ( Id ` C ) ` x ) e. ( x H x ) ) |
| 12 |
1 2 3 4
|
rnghmsubcsetclem2 |
|- ( ( ph /\ x e. B ) -> A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) |
| 13 |
11 12
|
jca |
|- ( ( ph /\ x e. B ) -> ( ( ( Id ` C ) ` x ) e. ( x H x ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) ) |
| 14 |
13
|
ralrimiva |
|- ( ph -> A. x e. B ( ( ( Id ` C ) ` x ) e. ( x H x ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) ) |
| 15 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
| 16 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 17 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 18 |
1
|
estrccat |
|- ( U e. V -> C e. Cat ) |
| 19 |
2 18
|
syl |
|- ( ph -> C e. Cat ) |
| 20 |
|
incom |
|- ( Rng i^i U ) = ( U i^i Rng ) |
| 21 |
3 20
|
eqtrdi |
|- ( ph -> B = ( U i^i Rng ) ) |
| 22 |
21 4
|
rnghmresfn |
|- ( ph -> H Fn ( B X. B ) ) |
| 23 |
15 16 17 19 22
|
issubc2 |
|- ( ph -> ( H e. ( Subcat ` C ) <-> ( H C_cat ( Homf ` C ) /\ A. x e. B ( ( ( Id ` C ) ` x ) e. ( x H x ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) ) ) ) |
| 24 |
10 14 23
|
mpbir2and |
|- ( ph -> H e. ( Subcat ` C ) ) |