| Step |
Hyp |
Ref |
Expression |
| 1 |
|
estrchomfn.c |
|- C = ( ExtStrCat ` U ) |
| 2 |
|
estrchomfn.u |
|- ( ph -> U e. V ) |
| 3 |
|
estrchomfn.h |
|- H = ( Hom ` C ) |
| 4 |
1 2 3
|
estrchomfn |
|- ( ph -> H Fn ( U X. U ) ) |
| 5 |
1 2
|
estrcbas |
|- ( ph -> U = ( Base ` C ) ) |
| 6 |
5
|
eqcomd |
|- ( ph -> ( Base ` C ) = U ) |
| 7 |
6
|
sqxpeqd |
|- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = ( U X. U ) ) |
| 8 |
7
|
fneq2d |
|- ( ph -> ( H Fn ( ( Base ` C ) X. ( Base ` C ) ) <-> H Fn ( U X. U ) ) ) |
| 9 |
4 8
|
mpbird |
|- ( ph -> H Fn ( ( Base ` C ) X. ( Base ` C ) ) ) |
| 10 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
| 11 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 12 |
10 11 3
|
fnhomeqhomf |
|- ( H Fn ( ( Base ` C ) X. ( Base ` C ) ) -> ( Homf ` C ) = H ) |
| 13 |
9 12
|
syl |
|- ( ph -> ( Homf ` C ) = H ) |