Step |
Hyp |
Ref |
Expression |
1 |
|
estrchomfn.c |
|- C = ( ExtStrCat ` U ) |
2 |
|
estrchomfn.u |
|- ( ph -> U e. V ) |
3 |
|
estrchomfn.h |
|- H = ( Hom ` C ) |
4 |
|
eqid |
|- ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) |
5 |
|
ovex |
|- ( ( Base ` y ) ^m ( Base ` x ) ) e. _V |
6 |
4 5
|
fnmpoi |
|- ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) Fn ( U X. U ) |
7 |
1 2 3
|
estrchomfval |
|- ( ph -> H = ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) ) |
8 |
7
|
fneq1d |
|- ( ph -> ( H Fn ( U X. U ) <-> ( x e. U , y e. U |-> ( ( Base ` y ) ^m ( Base ` x ) ) ) Fn ( U X. U ) ) ) |
9 |
6 8
|
mpbiri |
|- ( ph -> H Fn ( U X. U ) ) |