Metamath Proof Explorer


Theorem estrchomfn

Description: The Hom-set operation in the category of extensible structures (in a universe) is a function. (Contributed by AV, 8-Mar-2020)

Ref Expression
Hypotheses estrchomfn.c C = ExtStrCat U
estrchomfn.u φ U V
estrchomfn.h H = Hom C
Assertion estrchomfn φ H Fn U × U

Proof

Step Hyp Ref Expression
1 estrchomfn.c C = ExtStrCat U
2 estrchomfn.u φ U V
3 estrchomfn.h H = Hom C
4 eqid x U , y U Base y Base x = x U , y U Base y Base x
5 ovex Base y Base x V
6 4 5 fnmpoi x U , y U Base y Base x Fn U × U
7 1 2 3 estrchomfval φ H = x U , y U Base y Base x
8 7 fneq1d φ H Fn U × U x U , y U Base y Base x Fn U × U
9 6 8 mpbiri φ H Fn U × U