Metamath Proof Explorer


Theorem estrchomfeqhom

Description: The functionalized Hom-set operation equals the Hom-set operation in the category of extensible structures (in a universe). (Contributed by AV, 8-Mar-2020)

Ref Expression
Hypotheses estrchomfn.c C = ExtStrCat U
estrchomfn.u φ U V
estrchomfn.h H = Hom C
Assertion estrchomfeqhom φ Hom 𝑓 C = H

Proof

Step Hyp Ref Expression
1 estrchomfn.c C = ExtStrCat U
2 estrchomfn.u φ U V
3 estrchomfn.h H = Hom C
4 1 2 3 estrchomfn φ H Fn U × U
5 1 2 estrcbas φ U = Base C
6 5 eqcomd φ Base C = U
7 6 sqxpeqd φ Base C × Base C = U × U
8 7 fneq2d φ H Fn Base C × Base C H Fn U × U
9 4 8 mpbird φ H Fn Base C × Base C
10 eqid Hom 𝑓 C = Hom 𝑓 C
11 eqid Base C = Base C
12 10 11 3 fnhomeqhomf H Fn Base C × Base C Hom 𝑓 C = H
13 9 12 syl φ Hom 𝑓 C = H