Metamath Proof Explorer


Theorem estrreslem1

Description: Lemma 1 for estrres . (Contributed by AV, 14-Mar-2020) (Proof shortened by AV, 28-Oct-2024)

Ref Expression
Hypotheses estrres.c φ C = Base ndx B Hom ndx H comp ndx · ˙
estrres.b φ B V
Assertion estrreslem1 φ B = Base C

Proof

Step Hyp Ref Expression
1 estrres.c φ C = Base ndx B Hom ndx H comp ndx · ˙
2 estrres.b φ B V
3 1 fveq2d φ Base C = Base Base ndx B Hom ndx H comp ndx · ˙
4 baseid Base = Slot Base ndx
5 tpex Base ndx B Hom ndx H comp ndx · ˙ V
6 5 a1i φ Base ndx B Hom ndx H comp ndx · ˙ V
7 4 6 strfvnd φ Base Base ndx B Hom ndx H comp ndx · ˙ = Base ndx B Hom ndx H comp ndx · ˙ Base ndx
8 fvexd φ Base ndx V
9 slotsbhcdif Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx
10 3simpa Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx Base ndx Hom ndx Base ndx comp ndx
11 9 10 mp1i φ Base ndx Hom ndx Base ndx comp ndx
12 fvtp1g Base ndx V B V Base ndx Hom ndx Base ndx comp ndx Base ndx B Hom ndx H comp ndx · ˙ Base ndx = B
13 8 2 11 12 syl21anc φ Base ndx B Hom ndx H comp ndx · ˙ Base ndx = B
14 3 7 13 3eqtrrd φ B = Base C