Metamath Proof Explorer


Theorem estrreslem1

Description: Lemma 1 for estrres . (Contributed by AV, 14-Mar-2020) (Proof shortened by AV, 28-Oct-2024)

Ref Expression
Hypotheses estrres.c φC=BasendxBHomndxHcompndx·˙
estrres.b φBV
Assertion estrreslem1 φB=BaseC

Proof

Step Hyp Ref Expression
1 estrres.c φC=BasendxBHomndxHcompndx·˙
2 estrres.b φBV
3 1 fveq2d φBaseC=BaseBasendxBHomndxHcompndx·˙
4 baseid Base=SlotBasendx
5 tpex BasendxBHomndxHcompndx·˙V
6 5 a1i φBasendxBHomndxHcompndx·˙V
7 4 6 strfvnd φBaseBasendxBHomndxHcompndx·˙=BasendxBHomndxHcompndx·˙Basendx
8 fvexd φBasendxV
9 slotsbhcdif BasendxHomndxBasendxcompndxHomndxcompndx
10 3simpa BasendxHomndxBasendxcompndxHomndxcompndxBasendxHomndxBasendxcompndx
11 9 10 mp1i φBasendxHomndxBasendxcompndx
12 fvtp1g BasendxVBVBasendxHomndxBasendxcompndxBasendxBHomndxHcompndx·˙Basendx=B
13 8 2 11 12 syl21anc φBasendxBHomndxHcompndx·˙Basendx=B
14 3 7 13 3eqtrrd φB=BaseC