Metamath Proof Explorer


Theorem estrreslem1

Description: Lemma 1 for estrres . (Contributed by AV, 14-Mar-2020)

Ref Expression
Hypotheses estrres.c
|- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } )
estrres.b
|- ( ph -> B e. V )
Assertion estrreslem1
|- ( ph -> B = ( Base ` C ) )

Proof

Step Hyp Ref Expression
1 estrres.c
 |-  ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } )
2 estrres.b
 |-  ( ph -> B e. V )
3 1 fveq2d
 |-  ( ph -> ( Base ` C ) = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) )
4 tpex
 |-  { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V
5 4 a1i
 |-  ( ph -> { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V )
6 df-base
 |-  Base = Slot 1
7 1nn
 |-  1 e. NN
8 5 6 7 strndxid
 |-  ( ph -> ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ` ( Base ` ndx ) ) = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) )
9 fvexd
 |-  ( ph -> ( Base ` ndx ) e. _V )
10 slotsbhcdif
 |-  ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) )
11 3simpa
 |-  ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) ) )
12 10 11 mp1i
 |-  ( ph -> ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) ) )
13 fvtp1g
 |-  ( ( ( ( Base ` ndx ) e. _V /\ B e. V ) /\ ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) ) ) -> ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ` ( Base ` ndx ) ) = B )
14 9 2 12 13 syl21anc
 |-  ( ph -> ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ` ( Base ` ndx ) ) = B )
15 3 8 14 3eqtr2rd
 |-  ( ph -> B = ( Base ` C ) )