Step |
Hyp |
Ref |
Expression |
1 |
|
estrres.c |
|- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
2 |
|
estrres.b |
|- ( ph -> B e. V ) |
3 |
1
|
fveq2d |
|- ( ph -> ( Base ` C ) = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) ) |
4 |
|
tpex |
|- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V |
5 |
4
|
a1i |
|- ( ph -> { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V ) |
6 |
|
df-base |
|- Base = Slot 1 |
7 |
|
1nn |
|- 1 e. NN |
8 |
5 6 7
|
strndxid |
|- ( ph -> ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ` ( Base ` ndx ) ) = ( Base ` { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) ) |
9 |
|
fvexd |
|- ( ph -> ( Base ` ndx ) e. _V ) |
10 |
|
slotsbhcdif |
|- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
11 |
|
3simpa |
|- ( ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) -> ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) ) ) |
12 |
10 11
|
mp1i |
|- ( ph -> ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) ) ) |
13 |
|
fvtp1g |
|- ( ( ( ( Base ` ndx ) e. _V /\ B e. V ) /\ ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) ) ) -> ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ` ( Base ` ndx ) ) = B ) |
14 |
9 2 12 13
|
syl21anc |
|- ( ph -> ( { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ` ( Base ` ndx ) ) = B ) |
15 |
3 8 14
|
3eqtr2rd |
|- ( ph -> B = ( Base ` C ) ) |