| Step |
Hyp |
Ref |
Expression |
| 1 |
|
estrchomfn.c |
⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) |
| 2 |
|
estrchomfn.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 3 |
|
estrchomfn.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 4 |
1 2 3
|
estrchomfn |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑈 × 𝑈 ) ) |
| 5 |
1 2
|
estrcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
| 6 |
5
|
eqcomd |
⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = 𝑈 ) |
| 7 |
6
|
sqxpeqd |
⊢ ( 𝜑 → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) = ( 𝑈 × 𝑈 ) ) |
| 8 |
7
|
fneq2d |
⊢ ( 𝜑 → ( 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ 𝐻 Fn ( 𝑈 × 𝑈 ) ) ) |
| 9 |
4 8
|
mpbird |
⊢ ( 𝜑 → 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 10 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 12 |
10 11 3
|
fnhomeqhomf |
⊢ ( 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( Homf ‘ 𝐶 ) = 𝐻 ) |
| 13 |
9 12
|
syl |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = 𝐻 ) |