Metamath Proof Explorer


Theorem estrchomfeqhom

Description: The functionalized Hom-set operation equals the Hom-set operation in the category of extensible structures (in a universe). (Contributed by AV, 8-Mar-2020)

Ref Expression
Hypotheses estrchomfn.c 𝐶 = ( ExtStrCat ‘ 𝑈 )
estrchomfn.u ( 𝜑𝑈𝑉 )
estrchomfn.h 𝐻 = ( Hom ‘ 𝐶 )
Assertion estrchomfeqhom ( 𝜑 → ( Homf𝐶 ) = 𝐻 )

Proof

Step Hyp Ref Expression
1 estrchomfn.c 𝐶 = ( ExtStrCat ‘ 𝑈 )
2 estrchomfn.u ( 𝜑𝑈𝑉 )
3 estrchomfn.h 𝐻 = ( Hom ‘ 𝐶 )
4 1 2 3 estrchomfn ( 𝜑𝐻 Fn ( 𝑈 × 𝑈 ) )
5 1 2 estrcbas ( 𝜑𝑈 = ( Base ‘ 𝐶 ) )
6 5 eqcomd ( 𝜑 → ( Base ‘ 𝐶 ) = 𝑈 )
7 6 sqxpeqd ( 𝜑 → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) = ( 𝑈 × 𝑈 ) )
8 7 fneq2d ( 𝜑 → ( 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ 𝐻 Fn ( 𝑈 × 𝑈 ) ) )
9 4 8 mpbird ( 𝜑𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) )
10 eqid ( Homf𝐶 ) = ( Homf𝐶 )
11 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
12 10 11 3 fnhomeqhomf ( 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( Homf𝐶 ) = 𝐻 )
13 9 12 syl ( 𝜑 → ( Homf𝐶 ) = 𝐻 )