Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsubcrngc.c |
⊢ 𝐶 = ( RngCat ‘ 𝑈 ) |
2 |
|
rhmsubcrngc.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
rhmsubcrngc.b |
⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) |
4 |
|
rhmsubcrngc.h |
⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
5 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) = ( 𝑈 ∩ Rng ) ) |
6 |
|
eqidd |
⊢ ( 𝜑 → ( RngHomo ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) = ( RngHomo ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ) |
7 |
|
eqidd |
⊢ ( 𝜑 → ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
8 |
1 2 5 6 7
|
dfrngc2 |
⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , ( 𝑈 ∩ Rng ) 〉 , 〈 ( Hom ‘ ndx ) , ( RngHomo ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) 〉 } ) |
9 |
|
inex1g |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Rng ) ∈ V ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) ∈ V ) |
11 |
|
rnghmfn |
⊢ RngHomo Fn ( Rng × Rng ) |
12 |
|
fnfun |
⊢ ( RngHomo Fn ( Rng × Rng ) → Fun RngHomo ) |
13 |
11 12
|
mp1i |
⊢ ( 𝜑 → Fun RngHomo ) |
14 |
|
sqxpexg |
⊢ ( ( 𝑈 ∩ Rng ) ∈ V → ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ∈ V ) |
15 |
10 14
|
syl |
⊢ ( 𝜑 → ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ∈ V ) |
16 |
|
resfunexg |
⊢ ( ( Fun RngHomo ∧ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ∈ V ) → ( RngHomo ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ∈ V ) |
17 |
13 15 16
|
syl2anc |
⊢ ( 𝜑 → ( RngHomo ↾ ( ( 𝑈 ∩ Rng ) × ( 𝑈 ∩ Rng ) ) ) ∈ V ) |
18 |
|
fvexd |
⊢ ( 𝜑 → ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) ∈ V ) |
19 |
|
rhmfn |
⊢ RingHom Fn ( Ring × Ring ) |
20 |
|
fnfun |
⊢ ( RingHom Fn ( Ring × Ring ) → Fun RingHom ) |
21 |
19 20
|
mp1i |
⊢ ( 𝜑 → Fun RingHom ) |
22 |
|
incom |
⊢ ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring ) |
23 |
3 22
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
24 |
|
inex1g |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Ring ) ∈ V ) |
25 |
2 24
|
syl |
⊢ ( 𝜑 → ( 𝑈 ∩ Ring ) ∈ V ) |
26 |
23 25
|
eqeltrd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
27 |
|
sqxpexg |
⊢ ( 𝐵 ∈ V → ( 𝐵 × 𝐵 ) ∈ V ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) ∈ V ) |
29 |
|
resfunexg |
⊢ ( ( Fun RingHom ∧ ( 𝐵 × 𝐵 ) ∈ V ) → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ∈ V ) |
30 |
21 28 29
|
syl2anc |
⊢ ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ∈ V ) |
31 |
4 30
|
eqeltrd |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
32 |
|
ringrng |
⊢ ( 𝑟 ∈ Ring → 𝑟 ∈ Rng ) |
33 |
32
|
a1i |
⊢ ( 𝜑 → ( 𝑟 ∈ Ring → 𝑟 ∈ Rng ) ) |
34 |
33
|
ssrdv |
⊢ ( 𝜑 → Ring ⊆ Rng ) |
35 |
34
|
ssrind |
⊢ ( 𝜑 → ( Ring ∩ 𝑈 ) ⊆ ( Rng ∩ 𝑈 ) ) |
36 |
|
incom |
⊢ ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) |
37 |
36
|
a1i |
⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) ) |
38 |
35 3 37
|
3sstr4d |
⊢ ( 𝜑 → 𝐵 ⊆ ( 𝑈 ∩ Rng ) ) |
39 |
8 10 17 18 31 38
|
estrres |
⊢ ( 𝜑 → ( ( 𝐶 ↾s 𝐵 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) 〉 } ) |
40 |
|
eqid |
⊢ ( 𝐶 ↾cat 𝐻 ) = ( 𝐶 ↾cat 𝐻 ) |
41 |
|
fvexd |
⊢ ( 𝜑 → ( RngCat ‘ 𝑈 ) ∈ V ) |
42 |
1 41
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ V ) |
43 |
23 4
|
rhmresfn |
⊢ ( 𝜑 → 𝐻 Fn ( 𝐵 × 𝐵 ) ) |
44 |
40 42 26 43
|
rescval2 |
⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐻 ) = ( ( 𝐶 ↾s 𝐵 ) sSet 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) ) |
45 |
|
eqid |
⊢ ( RingCat ‘ 𝑈 ) = ( RingCat ‘ 𝑈 ) |
46 |
45 2 23 4 7
|
dfringc2 |
⊢ ( 𝜑 → ( RingCat ‘ 𝑈 ) = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , ( comp ‘ ( ExtStrCat ‘ 𝑈 ) ) 〉 } ) |
47 |
39 44 46
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐶 ↾cat 𝐻 ) = ( RingCat ‘ 𝑈 ) ) |