Metamath Proof Explorer


Theorem rngcresringcat

Description: The restriction of the category of non-unital rings to the set of unital ring homomorphisms is the category of unital rings. (Contributed by AV, 16-Mar-2020)

Ref Expression
Hypotheses rhmsubcrngc.c C = RngCat U
rhmsubcrngc.u φ U V
rhmsubcrngc.b φ B = Ring U
rhmsubcrngc.h φ H = RingHom B × B
Assertion rngcresringcat φ C cat H = RingCat U

Proof

Step Hyp Ref Expression
1 rhmsubcrngc.c C = RngCat U
2 rhmsubcrngc.u φ U V
3 rhmsubcrngc.b φ B = Ring U
4 rhmsubcrngc.h φ H = RingHom B × B
5 eqidd φ U Rng = U Rng
6 eqidd φ RngHomo U Rng × U Rng = RngHomo U Rng × U Rng
7 eqidd φ comp ExtStrCat U = comp ExtStrCat U
8 1 2 5 6 7 dfrngc2 φ C = Base ndx U Rng Hom ndx RngHomo U Rng × U Rng comp ndx comp ExtStrCat U
9 inex1g U V U Rng V
10 2 9 syl φ U Rng V
11 rnghmfn RngHomo Fn Rng × Rng
12 fnfun RngHomo Fn Rng × Rng Fun RngHomo
13 11 12 mp1i φ Fun RngHomo
14 sqxpexg U Rng V U Rng × U Rng V
15 10 14 syl φ U Rng × U Rng V
16 resfunexg Fun RngHomo U Rng × U Rng V RngHomo U Rng × U Rng V
17 13 15 16 syl2anc φ RngHomo U Rng × U Rng V
18 fvexd φ comp ExtStrCat U V
19 rhmfn RingHom Fn Ring × Ring
20 fnfun RingHom Fn Ring × Ring Fun RingHom
21 19 20 mp1i φ Fun RingHom
22 incom Ring U = U Ring
23 3 22 eqtrdi φ B = U Ring
24 inex1g U V U Ring V
25 2 24 syl φ U Ring V
26 23 25 eqeltrd φ B V
27 sqxpexg B V B × B V
28 26 27 syl φ B × B V
29 resfunexg Fun RingHom B × B V RingHom B × B V
30 21 28 29 syl2anc φ RingHom B × B V
31 4 30 eqeltrd φ H V
32 ringrng r Ring r Rng
33 32 a1i φ r Ring r Rng
34 33 ssrdv φ Ring Rng
35 34 ssrind φ Ring U Rng U
36 incom U Rng = Rng U
37 36 a1i φ U Rng = Rng U
38 35 3 37 3sstr4d φ B U Rng
39 8 10 17 18 31 38 estrres φ C 𝑠 B sSet Hom ndx H = Base ndx B Hom ndx H comp ndx comp ExtStrCat U
40 eqid C cat H = C cat H
41 fvexd φ RngCat U V
42 1 41 eqeltrid φ C V
43 23 4 rhmresfn φ H Fn B × B
44 40 42 26 43 rescval2 φ C cat H = C 𝑠 B sSet Hom ndx H
45 eqid RingCat U = RingCat U
46 45 2 23 4 7 dfringc2 φ RingCat U = Base ndx B Hom ndx H comp ndx comp ExtStrCat U
47 39 44 46 3eqtr4d φ C cat H = RingCat U