Metamath Proof Explorer


Theorem rnghmfn

Description: The mapping of two non-unital rings to the non-unital ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020)

Ref Expression
Assertion rnghmfn RngHomo Fn Rng × Rng

Proof

Step Hyp Ref Expression
1 df-rnghomo RngHomo = r Rng , s Rng Base r / v Base s / w f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y
2 ovex w v V
3 2 rabex f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y V
4 3 csbex Base s / w f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y V
5 4 csbex Base r / v Base s / w f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y V
6 1 5 fnmpoi RngHomo Fn Rng × Rng