Metamath Proof Explorer


Definition df-rnghm

Description: Define the set of non-unital ring homomorphisms from r to s . (Contributed by AV, 20-Feb-2020)

Ref Expression
Assertion df-rnghm RngHom=rRng,sRngBaser/vBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy

Detailed syntax breakdown

Step Hyp Ref Expression
0 crnghm classRngHom
1 vr setvarr
2 crng classRng
3 vs setvars
4 cbs classBase
5 1 cv setvarr
6 5 4 cfv classBaser
7 vv setvarv
8 3 cv setvars
9 8 4 cfv classBases
10 vw setvarw
11 vf setvarf
12 10 cv setvarw
13 cmap class𝑚
14 7 cv setvarv
15 12 14 13 co classwv
16 vx setvarx
17 vy setvary
18 11 cv setvarf
19 16 cv setvarx
20 cplusg class+𝑔
21 5 20 cfv class+r
22 17 cv setvary
23 19 22 21 co classx+ry
24 23 18 cfv classfx+ry
25 19 18 cfv classfx
26 8 20 cfv class+s
27 22 18 cfv classfy
28 25 27 26 co classfx+sfy
29 24 28 wceq wfffx+ry=fx+sfy
30 cmulr class𝑟
31 5 30 cfv classr
32 19 22 31 co classxry
33 32 18 cfv classfxry
34 8 30 cfv classs
35 25 27 34 co classfxsfy
36 33 35 wceq wfffxry=fxsfy
37 29 36 wa wfffx+ry=fx+sfyfxry=fxsfy
38 37 17 14 wral wffyvfx+ry=fx+sfyfxry=fxsfy
39 38 16 14 wral wffxvyvfx+ry=fx+sfyfxry=fxsfy
40 39 11 15 crab classfwv|xvyvfx+ry=fx+sfyfxry=fxsfy
41 10 9 40 csb classBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy
42 7 6 41 csb classBaser/vBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy
43 1 3 2 2 42 cmpo classrRng,sRngBaser/vBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy
44 0 43 wceq wffRngHom=rRng,sRngBaser/vBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy