Metamath Proof Explorer


Theorem ringcsect

Description: A section in the category of unital rings, written out. (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypotheses ringcsect.c C=RingCatU
ringcsect.b B=BaseC
ringcsect.u φUV
ringcsect.x φXB
ringcsect.y φYB
ringcsect.e E=BaseX
ringcsect.n S=SectC
Assertion ringcsect φFXSYGFXRingHomYGYRingHomXGF=IE

Proof

Step Hyp Ref Expression
1 ringcsect.c C=RingCatU
2 ringcsect.b B=BaseC
3 ringcsect.u φUV
4 ringcsect.x φXB
5 ringcsect.y φYB
6 ringcsect.e E=BaseX
7 ringcsect.n S=SectC
8 eqid HomC=HomC
9 eqid compC=compC
10 eqid IdC=IdC
11 1 ringccat UVCCat
12 3 11 syl φCCat
13 2 8 9 10 7 12 4 5 issect φFXSYGFXHomCYGYHomCXGXYcompCXF=IdCX
14 1 2 3 8 4 5 ringchom φXHomCY=XRingHomY
15 14 eleq2d φFXHomCYFXRingHomY
16 1 2 3 8 5 4 ringchom φYHomCX=YRingHomX
17 16 eleq2d φGYHomCXGYRingHomX
18 15 17 anbi12d φFXHomCYGYHomCXFXRingHomYGYRingHomX
19 18 anbi1d φFXHomCYGYHomCXGXYcompCXF=IdCXFXRingHomYGYRingHomXGXYcompCXF=IdCX
20 3 adantr φFXRingHomYGYRingHomXUV
21 4 adantr φFXRingHomYGYRingHomXXB
22 1 2 3 ringcbas φB=URing
23 22 eleq2d φXBXURing
24 inss1 URingU
25 24 a1i φURingU
26 25 sseld φXURingXU
27 23 26 sylbid φXBXU
28 27 adantr φFXRingHomYGYRingHomXXBXU
29 21 28 mpd φFXRingHomYGYRingHomXXU
30 5 adantr φFXRingHomYGYRingHomXYB
31 22 eleq2d φYBYURing
32 25 sseld φYURingYU
33 31 32 sylbid φYBYU
34 33 adantr φFXRingHomYGYRingHomXYBYU
35 30 34 mpd φFXRingHomYGYRingHomXYU
36 eqid BaseX=BaseX
37 eqid BaseY=BaseY
38 36 37 rhmf FXRingHomYF:BaseXBaseY
39 38 adantr FXRingHomYGYRingHomXF:BaseXBaseY
40 39 adantl φFXRingHomYGYRingHomXF:BaseXBaseY
41 37 36 rhmf GYRingHomXG:BaseYBaseX
42 41 adantl FXRingHomYGYRingHomXG:BaseYBaseX
43 42 adantl φFXRingHomYGYRingHomXG:BaseYBaseX
44 1 20 9 29 35 29 40 43 ringcco φFXRingHomYGYRingHomXGXYcompCXF=GF
45 1 2 10 3 4 6 ringcid φIdCX=IE
46 45 adantr φFXRingHomYGYRingHomXIdCX=IE
47 44 46 eqeq12d φFXRingHomYGYRingHomXGXYcompCXF=IdCXGF=IE
48 47 pm5.32da φFXRingHomYGYRingHomXGXYcompCXF=IdCXFXRingHomYGYRingHomXGF=IE
49 19 48 bitrd φFXHomCYGYHomCXGXYcompCXF=IdCXFXRingHomYGYRingHomXGF=IE
50 df-3an FXHomCYGYHomCXGXYcompCXF=IdCXFXHomCYGYHomCXGXYcompCXF=IdCX
51 df-3an FXRingHomYGYRingHomXGF=IEFXRingHomYGYRingHomXGF=IE
52 49 50 51 3bitr4g φFXHomCYGYHomCXGXYcompCXF=IdCXFXRingHomYGYRingHomXGF=IE
53 13 52 bitrd φFXSYGFXRingHomYGYRingHomXGF=IE