Metamath Proof Explorer


Theorem ringccat

Description: The category of unital rings is a category. (Contributed by AV, 14-Feb-2020) (Revised by AV, 9-Mar-2020)

Ref Expression
Hypothesis ringccat.c C = RingCat U
Assertion ringccat U V C Cat

Proof

Step Hyp Ref Expression
1 ringccat.c C = RingCat U
2 id U V U V
3 eqidd U V U Ring = U Ring
4 eqidd U V RingHom U Ring × U Ring = RingHom U Ring × U Ring
5 1 2 3 4 ringcval U V C = ExtStrCat U cat RingHom U Ring × U Ring
6 eqid ExtStrCat U cat RingHom U Ring × U Ring = ExtStrCat U cat RingHom U Ring × U Ring
7 eqid ExtStrCat U = ExtStrCat U
8 eqidd U V Ring U = Ring U
9 incom U Ring = Ring U
10 9 a1i U V U Ring = Ring U
11 10 sqxpeqd U V U Ring × U Ring = Ring U × Ring U
12 11 reseq2d U V RingHom U Ring × U Ring = RingHom Ring U × Ring U
13 7 2 8 12 rhmsubcsetc U V RingHom U Ring × U Ring Subcat ExtStrCat U
14 6 13 subccat U V ExtStrCat U cat RingHom U Ring × U Ring Cat
15 5 14 eqeltrd U V C Cat