Step |
Hyp |
Ref |
Expression |
1 |
|
ringccat.c |
⊢ 𝐶 = ( RingCat ‘ 𝑈 ) |
2 |
|
id |
⊢ ( 𝑈 ∈ 𝑉 → 𝑈 ∈ 𝑉 ) |
3 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Ring ) = ( 𝑈 ∩ Ring ) ) |
4 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑉 → ( RingHom ↾ ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) ) = ( RingHom ↾ ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) ) ) |
5 |
1 2 3 4
|
ringcval |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RingHom ↾ ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) ) ) ) |
6 |
|
eqid |
⊢ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RingHom ↾ ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RingHom ↾ ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) ) ) |
7 |
|
eqid |
⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) |
8 |
|
eqidd |
⊢ ( 𝑈 ∈ 𝑉 → ( Ring ∩ 𝑈 ) = ( Ring ∩ 𝑈 ) ) |
9 |
|
incom |
⊢ ( 𝑈 ∩ Ring ) = ( Ring ∩ 𝑈 ) |
10 |
9
|
a1i |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Ring ) = ( Ring ∩ 𝑈 ) ) |
11 |
10
|
sqxpeqd |
⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) = ( ( Ring ∩ 𝑈 ) × ( Ring ∩ 𝑈 ) ) ) |
12 |
11
|
reseq2d |
⊢ ( 𝑈 ∈ 𝑉 → ( RingHom ↾ ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) ) = ( RingHom ↾ ( ( Ring ∩ 𝑈 ) × ( Ring ∩ 𝑈 ) ) ) ) |
13 |
7 2 8 12
|
rhmsubcsetc |
⊢ ( 𝑈 ∈ 𝑉 → ( RingHom ↾ ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) ) ∈ ( Subcat ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
14 |
6 13
|
subccat |
⊢ ( 𝑈 ∈ 𝑉 → ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RingHom ↾ ( ( 𝑈 ∩ Ring ) × ( 𝑈 ∩ Ring ) ) ) ) ∈ Cat ) |
15 |
5 14
|
eqeltrd |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |