Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsubcsetc.c |
⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) |
2 |
|
rhmsubcsetc.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
rhmsubcsetc.b |
⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) |
4 |
|
rhmsubcsetc.h |
⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
5 |
2 3
|
rhmsscmap |
⊢ ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ⊆cat ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
6 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
7 |
1 2 6
|
estrchomfeqhom |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
8 |
1 2 6
|
estrchomfval |
⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
9 |
7 8
|
eqtrd |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) ) |
10 |
5 4 9
|
3brtr4d |
⊢ ( 𝜑 → 𝐻 ⊆cat ( Homf ‘ 𝐶 ) ) |
11 |
1 2 3 4
|
rhmsubcsetclem1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |
12 |
1 2 3 4
|
rhmsubcsetclem2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
13 |
11 12
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
14 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
15 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
16 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
17 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
18 |
1
|
estrccat |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
19 |
2 18
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
20 |
|
incom |
⊢ ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring ) |
21 |
3 20
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
22 |
21 4
|
rhmresfn |
⊢ ( 𝜑 → 𝐻 Fn ( 𝐵 × 𝐵 ) ) |
23 |
15 16 17 19 22
|
issubc2 |
⊢ ( 𝜑 → ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐻 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ 𝐵 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) ) |
24 |
10 14 23
|
mpbir2and |
⊢ ( 𝜑 → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |