Metamath Proof Explorer


Theorem rhmsubcsetc

Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses rhmsubcsetc.c 𝐶 = ( ExtStrCat ‘ 𝑈 )
rhmsubcsetc.u ( 𝜑𝑈𝑉 )
rhmsubcsetc.b ( 𝜑𝐵 = ( Ring ∩ 𝑈 ) )
rhmsubcsetc.h ( 𝜑𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) )
Assertion rhmsubcsetc ( 𝜑𝐻 ∈ ( Subcat ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 rhmsubcsetc.c 𝐶 = ( ExtStrCat ‘ 𝑈 )
2 rhmsubcsetc.u ( 𝜑𝑈𝑉 )
3 rhmsubcsetc.b ( 𝜑𝐵 = ( Ring ∩ 𝑈 ) )
4 rhmsubcsetc.h ( 𝜑𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) )
5 2 3 rhmsscmap ( 𝜑 → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ⊆cat ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) )
6 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
7 1 2 6 estrchomfeqhom ( 𝜑 → ( Homf𝐶 ) = ( Hom ‘ 𝐶 ) )
8 1 2 6 estrchomfval ( 𝜑 → ( Hom ‘ 𝐶 ) = ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) )
9 7 8 eqtrd ( 𝜑 → ( Homf𝐶 ) = ( 𝑥𝑈 , 𝑦𝑈 ↦ ( ( Base ‘ 𝑦 ) ↑m ( Base ‘ 𝑥 ) ) ) )
10 5 4 9 3brtr4d ( 𝜑𝐻cat ( Homf𝐶 ) )
11 1 2 3 4 rhmsubcsetclem1 ( ( 𝜑𝑥𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) )
12 1 2 3 4 rhmsubcsetclem2 ( ( 𝜑𝑥𝐵 ) → ∀ 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) )
13 11 12 jca ( ( 𝜑𝑥𝐵 ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) )
14 13 ralrimiva ( 𝜑 → ∀ 𝑥𝐵 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) )
15 eqid ( Homf𝐶 ) = ( Homf𝐶 )
16 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
17 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
18 1 estrccat ( 𝑈𝑉𝐶 ∈ Cat )
19 2 18 syl ( 𝜑𝐶 ∈ Cat )
20 incom ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring )
21 3 20 eqtrdi ( 𝜑𝐵 = ( 𝑈 ∩ Ring ) )
22 21 4 rhmresfn ( 𝜑𝐻 Fn ( 𝐵 × 𝐵 ) )
23 15 16 17 19 22 issubc2 ( 𝜑 → ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐻cat ( Homf𝐶 ) ∧ ∀ 𝑥𝐵 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦𝐵𝑧𝐵𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( ⟨ 𝑥 , 𝑦 ⟩ ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) )
24 10 14 23 mpbir2and ( 𝜑𝐻 ∈ ( Subcat ‘ 𝐶 ) )