Metamath Proof Explorer


Theorem rhmsubcsetclem1

Description: Lemma 1 for rhmsubcsetc . (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses rhmsubcsetc.c 𝐶 = ( ExtStrCat ‘ 𝑈 )
rhmsubcsetc.u ( 𝜑𝑈𝑉 )
rhmsubcsetc.b ( 𝜑𝐵 = ( Ring ∩ 𝑈 ) )
rhmsubcsetc.h ( 𝜑𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) )
Assertion rhmsubcsetclem1 ( ( 𝜑𝑥𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) )

Proof

Step Hyp Ref Expression
1 rhmsubcsetc.c 𝐶 = ( ExtStrCat ‘ 𝑈 )
2 rhmsubcsetc.u ( 𝜑𝑈𝑉 )
3 rhmsubcsetc.b ( 𝜑𝐵 = ( Ring ∩ 𝑈 ) )
4 rhmsubcsetc.h ( 𝜑𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) )
5 3 eleq2d ( 𝜑 → ( 𝑥𝐵𝑥 ∈ ( Ring ∩ 𝑈 ) ) )
6 elin ( 𝑥 ∈ ( Ring ∩ 𝑈 ) ↔ ( 𝑥 ∈ Ring ∧ 𝑥𝑈 ) )
7 6 simplbi ( 𝑥 ∈ ( Ring ∩ 𝑈 ) → 𝑥 ∈ Ring )
8 5 7 syl6bi ( 𝜑 → ( 𝑥𝐵𝑥 ∈ Ring ) )
9 8 imp ( ( 𝜑𝑥𝐵 ) → 𝑥 ∈ Ring )
10 eqid ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 )
11 10 idrhm ( 𝑥 ∈ Ring → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) )
12 9 11 syl ( ( 𝜑𝑥𝐵 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) )
13 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
14 2 adantr ( ( 𝜑𝑥𝐵 ) → 𝑈𝑉 )
15 6 simprbi ( 𝑥 ∈ ( Ring ∩ 𝑈 ) → 𝑥𝑈 )
16 5 15 syl6bi ( 𝜑 → ( 𝑥𝐵𝑥𝑈 ) )
17 16 imp ( ( 𝜑𝑥𝐵 ) → 𝑥𝑈 )
18 1 13 14 17 estrcid ( ( 𝜑𝑥𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) = ( I ↾ ( Base ‘ 𝑥 ) ) )
19 4 oveqdr ( ( 𝜑𝑥𝐵 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑥 ) )
20 eqid ( RingCat ‘ 𝑈 ) = ( RingCat ‘ 𝑈 )
21 eqid ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( Base ‘ ( RingCat ‘ 𝑈 ) )
22 eqid ( Hom ‘ ( RingCat ‘ 𝑈 ) ) = ( Hom ‘ ( RingCat ‘ 𝑈 ) )
23 20 21 2 22 ringchomfval ( 𝜑 → ( Hom ‘ ( RingCat ‘ 𝑈 ) ) = ( RingHom ↾ ( ( Base ‘ ( RingCat ‘ 𝑈 ) ) × ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) ) )
24 20 21 2 ringcbas ( 𝜑 → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) )
25 incom ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring )
26 3 25 eqtrdi ( 𝜑𝐵 = ( 𝑈 ∩ Ring ) )
27 26 eqcomd ( 𝜑 → ( 𝑈 ∩ Ring ) = 𝐵 )
28 24 27 eqtrd ( 𝜑 → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = 𝐵 )
29 28 sqxpeqd ( 𝜑 → ( ( Base ‘ ( RingCat ‘ 𝑈 ) ) × ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) = ( 𝐵 × 𝐵 ) )
30 29 reseq2d ( 𝜑 → ( RingHom ↾ ( ( Base ‘ ( RingCat ‘ 𝑈 ) ) × ( Base ‘ ( RingCat ‘ 𝑈 ) ) ) ) = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) )
31 23 30 eqtrd ( 𝜑 → ( Hom ‘ ( RingCat ‘ 𝑈 ) ) = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) )
32 31 adantr ( ( 𝜑𝑥𝐵 ) → ( Hom ‘ ( RingCat ‘ 𝑈 ) ) = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) )
33 32 eqcomd ( ( 𝜑𝑥𝐵 ) → ( RingHom ↾ ( 𝐵 × 𝐵 ) ) = ( Hom ‘ ( RingCat ‘ 𝑈 ) ) )
34 33 oveqd ( ( 𝜑𝑥𝐵 ) → ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑥 ) = ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑥 ) )
35 26 eleq2d ( 𝜑 → ( 𝑥𝐵𝑥 ∈ ( 𝑈 ∩ Ring ) ) )
36 35 biimpa ( ( 𝜑𝑥𝐵 ) → 𝑥 ∈ ( 𝑈 ∩ Ring ) )
37 24 adantr ( ( 𝜑𝑥𝐵 ) → ( Base ‘ ( RingCat ‘ 𝑈 ) ) = ( 𝑈 ∩ Ring ) )
38 36 37 eleqtrrd ( ( 𝜑𝑥𝐵 ) → 𝑥 ∈ ( Base ‘ ( RingCat ‘ 𝑈 ) ) )
39 20 21 14 22 38 38 ringchom ( ( 𝜑𝑥𝐵 ) → ( 𝑥 ( Hom ‘ ( RingCat ‘ 𝑈 ) ) 𝑥 ) = ( 𝑥 RingHom 𝑥 ) )
40 19 34 39 3eqtrd ( ( 𝜑𝑥𝐵 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 RingHom 𝑥 ) )
41 12 18 40 3eltr4d ( ( 𝜑𝑥𝐵 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) )