Step |
Hyp |
Ref |
Expression |
1 |
|
estrccat.c |
⊢ 𝐶 = ( ExtStrCat ‘ 𝑈 ) |
2 |
|
estrcid.o |
⊢ 1 = ( Id ‘ 𝐶 ) |
3 |
|
estrcid.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
4 |
|
estrcid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
5 |
1
|
estrccatid |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) ) |
7 |
6
|
simprd |
⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) |
8 |
2 7
|
eqtrid |
⊢ ( 𝜑 → 1 = ( 𝑥 ∈ 𝑈 ↦ ( I ↾ ( Base ‘ 𝑥 ) ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( Base ‘ 𝑥 ) = ( Base ‘ 𝑋 ) ) |
10 |
9
|
reseq2d |
⊢ ( 𝑥 = 𝑋 → ( I ↾ ( Base ‘ 𝑥 ) ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( I ↾ ( Base ‘ 𝑥 ) ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
12 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑋 ) ∈ V ) |
13 |
12
|
resiexd |
⊢ ( 𝜑 → ( I ↾ ( Base ‘ 𝑋 ) ) ∈ V ) |
14 |
8 11 4 13
|
fvmptd |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |