Metamath Proof Explorer


Theorem estrcid

Description: The identity arrow in the category of extensible structures is the identity function of base sets. (Contributed by AV, 8-Mar-2020)

Ref Expression
Hypotheses estrccat.c C = ExtStrCat U
estrcid.o 1 ˙ = Id C
estrcid.u φ U V
estrcid.x φ X U
Assertion estrcid φ 1 ˙ X = I Base X

Proof

Step Hyp Ref Expression
1 estrccat.c C = ExtStrCat U
2 estrcid.o 1 ˙ = Id C
3 estrcid.u φ U V
4 estrcid.x φ X U
5 1 estrccatid U V C Cat Id C = x U I Base x
6 3 5 syl φ C Cat Id C = x U I Base x
7 6 simprd φ Id C = x U I Base x
8 2 7 eqtrid φ 1 ˙ = x U I Base x
9 fveq2 x = X Base x = Base X
10 9 reseq2d x = X I Base x = I Base X
11 10 adantl φ x = X I Base x = I Base X
12 fvexd φ Base X V
13 12 resiexd φ I Base X V
14 8 11 4 13 fvmptd φ 1 ˙ X = I Base X