| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmsubcsetc.c |  | 
						
							| 2 |  | rhmsubcsetc.u |  | 
						
							| 3 |  | rhmsubcsetc.b |  | 
						
							| 4 |  | rhmsubcsetc.h |  | 
						
							| 5 | 3 | eleq2d |  | 
						
							| 6 |  | elin |  | 
						
							| 7 | 6 | simplbi |  | 
						
							| 8 | 5 7 | biimtrdi |  | 
						
							| 9 | 8 | imp |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 10 | idrhm |  | 
						
							| 12 | 9 11 | syl |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 2 | adantr |  | 
						
							| 15 | 6 | simprbi |  | 
						
							| 16 | 5 15 | biimtrdi |  | 
						
							| 17 | 16 | imp |  | 
						
							| 18 | 1 13 14 17 | estrcid |  | 
						
							| 19 | 4 | oveqdr |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 20 21 2 22 | ringchomfval |  | 
						
							| 24 | 20 21 2 | ringcbas |  | 
						
							| 25 |  | incom |  | 
						
							| 26 | 3 25 | eqtrdi |  | 
						
							| 27 | 26 | eqcomd |  | 
						
							| 28 | 24 27 | eqtrd |  | 
						
							| 29 | 28 | sqxpeqd |  | 
						
							| 30 | 29 | reseq2d |  | 
						
							| 31 | 23 30 | eqtrd |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 32 | eqcomd |  | 
						
							| 34 | 33 | oveqd |  | 
						
							| 35 | 26 | eleq2d |  | 
						
							| 36 | 35 | biimpa |  | 
						
							| 37 | 24 | adantr |  | 
						
							| 38 | 36 37 | eleqtrrd |  | 
						
							| 39 | 20 21 14 22 38 38 | ringchom |  | 
						
							| 40 | 19 34 39 | 3eqtrd |  | 
						
							| 41 | 12 18 40 | 3eltr4d |  |