Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsubcsetc.c |
|
2 |
|
rhmsubcsetc.u |
|
3 |
|
rhmsubcsetc.b |
|
4 |
|
rhmsubcsetc.h |
|
5 |
3
|
eleq2d |
|
6 |
|
elin |
|
7 |
6
|
simplbi |
|
8 |
5 7
|
syl6bi |
|
9 |
8
|
imp |
|
10 |
|
eqid |
|
11 |
10
|
idrhm |
|
12 |
9 11
|
syl |
|
13 |
|
eqid |
|
14 |
2
|
adantr |
|
15 |
6
|
simprbi |
|
16 |
5 15
|
syl6bi |
|
17 |
16
|
imp |
|
18 |
1 13 14 17
|
estrcid |
|
19 |
4
|
oveqdr |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
20 21 2 22
|
ringchomfval |
|
24 |
20 21 2
|
ringcbas |
|
25 |
|
incom |
|
26 |
3 25
|
eqtrdi |
|
27 |
26
|
eqcomd |
|
28 |
24 27
|
eqtrd |
|
29 |
28
|
sqxpeqd |
|
30 |
29
|
reseq2d |
|
31 |
23 30
|
eqtrd |
|
32 |
31
|
adantr |
|
33 |
32
|
eqcomd |
|
34 |
33
|
oveqd |
|
35 |
26
|
eleq2d |
|
36 |
35
|
biimpa |
|
37 |
24
|
adantr |
|
38 |
36 37
|
eleqtrrd |
|
39 |
20 21 14 22 38 38
|
ringchom |
|
40 |
19 34 39
|
3eqtrd |
|
41 |
12 18 40
|
3eltr4d |
|