| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmsubcsetc.c |  | 
						
							| 2 |  | rhmsubcsetc.u |  | 
						
							| 3 |  | rhmsubcsetc.b |  | 
						
							| 4 |  | rhmsubcsetc.h |  | 
						
							| 5 |  | simpl |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 | 6 | adantr |  | 
						
							| 8 |  | simpr |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 | 4 | rhmresel |  | 
						
							| 13 | 7 9 11 12 | syl3anc |  | 
						
							| 14 |  | simpr |  | 
						
							| 15 |  | simpl |  | 
						
							| 16 | 14 15 | anim12i |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 |  | simprl |  | 
						
							| 19 | 4 | rhmresel |  | 
						
							| 20 | 7 17 18 19 | syl3anc |  | 
						
							| 21 |  | rhmco |  | 
						
							| 22 | 13 20 21 | syl2anc |  | 
						
							| 23 | 2 | ad3antrrr |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 3 | eleq2d |  | 
						
							| 26 |  | elinel2 |  | 
						
							| 27 | 25 26 | biimtrdi |  | 
						
							| 28 | 27 | imp |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 | 3 | eleq2d |  | 
						
							| 32 |  | elinel2 |  | 
						
							| 33 | 31 32 | biimtrdi |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 34 | com12 |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 36 | impcom |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 | 3 | eleq2d |  | 
						
							| 40 |  | elinel2 |  | 
						
							| 41 | 39 40 | biimtrdi |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 | 42 | adantld |  | 
						
							| 44 | 43 | imp |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 |  | simprl |  | 
						
							| 50 | 49 | adantr |  | 
						
							| 51 | 14 | anim1i |  | 
						
							| 52 | 51 | ancoms |  | 
						
							| 53 | 52 | adantr |  | 
						
							| 54 |  | simpr |  | 
						
							| 55 | 50 53 54 19 | syl3anc |  | 
						
							| 56 | 46 47 | rhmf |  | 
						
							| 57 | 55 56 | syl |  | 
						
							| 58 | 57 | ex |  | 
						
							| 59 | 58 | ex |  | 
						
							| 60 | 59 | adantr |  | 
						
							| 61 | 60 | impcom |  | 
						
							| 62 | 61 | com12 |  | 
						
							| 63 | 62 | adantr |  | 
						
							| 64 | 63 | impcom |  | 
						
							| 65 | 12 | 3expa |  | 
						
							| 66 | 47 48 | rhmf |  | 
						
							| 67 | 65 66 | syl |  | 
						
							| 68 | 67 | ex |  | 
						
							| 69 | 68 | adantlr |  | 
						
							| 70 | 69 | adantld |  | 
						
							| 71 | 70 | imp |  | 
						
							| 72 | 1 23 24 30 38 45 46 47 48 64 71 | estrcco |  | 
						
							| 73 | 4 | adantr |  | 
						
							| 74 | 73 | oveqdr |  | 
						
							| 75 |  | ovres |  | 
						
							| 76 | 75 | ad2ant2l |  | 
						
							| 77 | 74 76 | eqtrd |  | 
						
							| 78 | 77 | adantr |  | 
						
							| 79 | 22 72 78 | 3eltr4d |  | 
						
							| 80 | 79 | ralrimivva |  | 
						
							| 81 | 80 | ralrimivva |  |