Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsubcsetc.c |
|
2 |
|
rhmsubcsetc.u |
|
3 |
|
rhmsubcsetc.b |
|
4 |
|
rhmsubcsetc.h |
|
5 |
|
simpl |
|
6 |
5
|
adantr |
|
7 |
6
|
adantr |
|
8 |
|
simpr |
|
9 |
8
|
adantr |
|
10 |
|
simpr |
|
11 |
10
|
adantl |
|
12 |
4
|
rhmresel |
|
13 |
7 9 11 12
|
syl3anc |
|
14 |
|
simpr |
|
15 |
|
simpl |
|
16 |
14 15
|
anim12i |
|
17 |
16
|
adantr |
|
18 |
|
simprl |
|
19 |
4
|
rhmresel |
|
20 |
7 17 18 19
|
syl3anc |
|
21 |
|
rhmco |
|
22 |
13 20 21
|
syl2anc |
|
23 |
2
|
ad3antrrr |
|
24 |
|
eqid |
|
25 |
3
|
eleq2d |
|
26 |
|
elinel2 |
|
27 |
25 26
|
syl6bi |
|
28 |
27
|
imp |
|
29 |
28
|
adantr |
|
30 |
29
|
adantr |
|
31 |
3
|
eleq2d |
|
32 |
|
elinel2 |
|
33 |
31 32
|
syl6bi |
|
34 |
33
|
adantr |
|
35 |
34
|
com12 |
|
36 |
35
|
adantr |
|
37 |
36
|
impcom |
|
38 |
37
|
adantr |
|
39 |
3
|
eleq2d |
|
40 |
|
elinel2 |
|
41 |
39 40
|
syl6bi |
|
42 |
41
|
adantr |
|
43 |
42
|
adantld |
|
44 |
43
|
imp |
|
45 |
44
|
adantr |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
|
eqid |
|
49 |
|
simprl |
|
50 |
49
|
adantr |
|
51 |
14
|
anim1i |
|
52 |
51
|
ancoms |
|
53 |
52
|
adantr |
|
54 |
|
simpr |
|
55 |
50 53 54 19
|
syl3anc |
|
56 |
46 47
|
rhmf |
|
57 |
55 56
|
syl |
|
58 |
57
|
ex |
|
59 |
58
|
ex |
|
60 |
59
|
adantr |
|
61 |
60
|
impcom |
|
62 |
61
|
com12 |
|
63 |
62
|
adantr |
|
64 |
63
|
impcom |
|
65 |
12
|
3expa |
|
66 |
47 48
|
rhmf |
|
67 |
65 66
|
syl |
|
68 |
67
|
ex |
|
69 |
68
|
adantlr |
|
70 |
69
|
adantld |
|
71 |
70
|
imp |
|
72 |
1 23 24 30 38 45 46 47 48 64 71
|
estrcco |
|
73 |
4
|
adantr |
|
74 |
73
|
oveqdr |
|
75 |
|
ovres |
|
76 |
75
|
ad2ant2l |
|
77 |
74 76
|
eqtrd |
|
78 |
77
|
adantr |
|
79 |
22 72 78
|
3eltr4d |
|
80 |
79
|
ralrimivva |
|
81 |
80
|
ralrimivva |
|