Metamath Proof Explorer


Theorem rhmsubcsetc

Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory of the category of extensible structures. (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses rhmsubcsetc.c C=ExtStrCatU
rhmsubcsetc.u φUV
rhmsubcsetc.b φB=RingU
rhmsubcsetc.h φH=RingHomB×B
Assertion rhmsubcsetc φHSubcatC

Proof

Step Hyp Ref Expression
1 rhmsubcsetc.c C=ExtStrCatU
2 rhmsubcsetc.u φUV
3 rhmsubcsetc.b φB=RingU
4 rhmsubcsetc.h φH=RingHomB×B
5 2 3 rhmsscmap φRingHomB×BcatxU,yUBaseyBasex
6 eqid HomC=HomC
7 1 2 6 estrchomfeqhom φHom𝑓C=HomC
8 1 2 6 estrchomfval φHomC=xU,yUBaseyBasex
9 7 8 eqtrd φHom𝑓C=xU,yUBaseyBasex
10 5 4 9 3brtr4d φHcatHom𝑓C
11 1 2 3 4 rhmsubcsetclem1 φxBIdCxxHx
12 1 2 3 4 rhmsubcsetclem2 φxByBzBfxHygyHzgxycompCzfxHz
13 11 12 jca φxBIdCxxHxyBzBfxHygyHzgxycompCzfxHz
14 13 ralrimiva φxBIdCxxHxyBzBfxHygyHzgxycompCzfxHz
15 eqid Hom𝑓C=Hom𝑓C
16 eqid IdC=IdC
17 eqid compC=compC
18 1 estrccat UVCCat
19 2 18 syl φCCat
20 incom RingU=URing
21 3 20 eqtrdi φB=URing
22 21 4 rhmresfn φHFnB×B
23 15 16 17 19 22 issubc2 φHSubcatCHcatHom𝑓CxBIdCxxHxyBzBfxHygyHzgxycompCzfxHz
24 10 14 23 mpbir2and φHSubcatC