Step |
Hyp |
Ref |
Expression |
1 |
|
ringccat.c |
|- C = ( RingCat ` U ) |
2 |
|
id |
|- ( U e. V -> U e. V ) |
3 |
|
eqidd |
|- ( U e. V -> ( U i^i Ring ) = ( U i^i Ring ) ) |
4 |
|
eqidd |
|- ( U e. V -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) = ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) |
5 |
1 2 3 4
|
ringcval |
|- ( U e. V -> C = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) |
6 |
|
eqid |
|- ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) |
7 |
|
eqid |
|- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
8 |
|
eqidd |
|- ( U e. V -> ( Ring i^i U ) = ( Ring i^i U ) ) |
9 |
|
incom |
|- ( U i^i Ring ) = ( Ring i^i U ) |
10 |
9
|
a1i |
|- ( U e. V -> ( U i^i Ring ) = ( Ring i^i U ) ) |
11 |
10
|
sqxpeqd |
|- ( U e. V -> ( ( U i^i Ring ) X. ( U i^i Ring ) ) = ( ( Ring i^i U ) X. ( Ring i^i U ) ) ) |
12 |
11
|
reseq2d |
|- ( U e. V -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) = ( RingHom |` ( ( Ring i^i U ) X. ( Ring i^i U ) ) ) ) |
13 |
7 2 8 12
|
rhmsubcsetc |
|- ( U e. V -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) e. ( Subcat ` ( ExtStrCat ` U ) ) ) |
14 |
6 13
|
subccat |
|- ( U e. V -> ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) e. Cat ) |
15 |
5 14
|
eqeltrd |
|- ( U e. V -> C e. Cat ) |