| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmsubcrngc.c |
|- C = ( RngCat ` U ) |
| 2 |
|
rhmsubcrngc.u |
|- ( ph -> U e. V ) |
| 3 |
|
rhmsubcrngc.b |
|- ( ph -> B = ( Ring i^i U ) ) |
| 4 |
|
rhmsubcrngc.h |
|- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
| 5 |
|
eqidd |
|- ( ph -> ( U i^i Rng ) = ( U i^i Rng ) ) |
| 6 |
|
eqidd |
|- ( ph -> ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) = ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) |
| 7 |
|
eqidd |
|- ( ph -> ( comp ` ( ExtStrCat ` U ) ) = ( comp ` ( ExtStrCat ` U ) ) ) |
| 8 |
1 2 5 6 7
|
dfrngc2 |
|- ( ph -> C = { <. ( Base ` ndx ) , ( U i^i Rng ) >. , <. ( Hom ` ndx ) , ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) >. , <. ( comp ` ndx ) , ( comp ` ( ExtStrCat ` U ) ) >. } ) |
| 9 |
|
inex1g |
|- ( U e. V -> ( U i^i Rng ) e. _V ) |
| 10 |
2 9
|
syl |
|- ( ph -> ( U i^i Rng ) e. _V ) |
| 11 |
|
rnghmfn |
|- RngHom Fn ( Rng X. Rng ) |
| 12 |
|
fnfun |
|- ( RngHom Fn ( Rng X. Rng ) -> Fun RngHom ) |
| 13 |
11 12
|
mp1i |
|- ( ph -> Fun RngHom ) |
| 14 |
|
sqxpexg |
|- ( ( U i^i Rng ) e. _V -> ( ( U i^i Rng ) X. ( U i^i Rng ) ) e. _V ) |
| 15 |
10 14
|
syl |
|- ( ph -> ( ( U i^i Rng ) X. ( U i^i Rng ) ) e. _V ) |
| 16 |
|
resfunexg |
|- ( ( Fun RngHom /\ ( ( U i^i Rng ) X. ( U i^i Rng ) ) e. _V ) -> ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) e. _V ) |
| 17 |
13 15 16
|
syl2anc |
|- ( ph -> ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) e. _V ) |
| 18 |
|
fvexd |
|- ( ph -> ( comp ` ( ExtStrCat ` U ) ) e. _V ) |
| 19 |
|
rhmfn |
|- RingHom Fn ( Ring X. Ring ) |
| 20 |
|
fnfun |
|- ( RingHom Fn ( Ring X. Ring ) -> Fun RingHom ) |
| 21 |
19 20
|
mp1i |
|- ( ph -> Fun RingHom ) |
| 22 |
|
incom |
|- ( Ring i^i U ) = ( U i^i Ring ) |
| 23 |
3 22
|
eqtrdi |
|- ( ph -> B = ( U i^i Ring ) ) |
| 24 |
|
inex1g |
|- ( U e. V -> ( U i^i Ring ) e. _V ) |
| 25 |
2 24
|
syl |
|- ( ph -> ( U i^i Ring ) e. _V ) |
| 26 |
23 25
|
eqeltrd |
|- ( ph -> B e. _V ) |
| 27 |
|
sqxpexg |
|- ( B e. _V -> ( B X. B ) e. _V ) |
| 28 |
26 27
|
syl |
|- ( ph -> ( B X. B ) e. _V ) |
| 29 |
|
resfunexg |
|- ( ( Fun RingHom /\ ( B X. B ) e. _V ) -> ( RingHom |` ( B X. B ) ) e. _V ) |
| 30 |
21 28 29
|
syl2anc |
|- ( ph -> ( RingHom |` ( B X. B ) ) e. _V ) |
| 31 |
4 30
|
eqeltrd |
|- ( ph -> H e. _V ) |
| 32 |
|
ringrng |
|- ( r e. Ring -> r e. Rng ) |
| 33 |
32
|
a1i |
|- ( ph -> ( r e. Ring -> r e. Rng ) ) |
| 34 |
33
|
ssrdv |
|- ( ph -> Ring C_ Rng ) |
| 35 |
34
|
ssrind |
|- ( ph -> ( Ring i^i U ) C_ ( Rng i^i U ) ) |
| 36 |
|
incom |
|- ( U i^i Rng ) = ( Rng i^i U ) |
| 37 |
36
|
a1i |
|- ( ph -> ( U i^i Rng ) = ( Rng i^i U ) ) |
| 38 |
35 3 37
|
3sstr4d |
|- ( ph -> B C_ ( U i^i Rng ) ) |
| 39 |
8 10 17 18 31 38
|
estrres |
|- ( ph -> ( ( C |`s B ) sSet <. ( Hom ` ndx ) , H >. ) = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( comp ` ( ExtStrCat ` U ) ) >. } ) |
| 40 |
|
eqid |
|- ( C |`cat H ) = ( C |`cat H ) |
| 41 |
|
fvexd |
|- ( ph -> ( RngCat ` U ) e. _V ) |
| 42 |
1 41
|
eqeltrid |
|- ( ph -> C e. _V ) |
| 43 |
23 4
|
rhmresfn |
|- ( ph -> H Fn ( B X. B ) ) |
| 44 |
40 42 26 43
|
rescval2 |
|- ( ph -> ( C |`cat H ) = ( ( C |`s B ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 45 |
|
eqid |
|- ( RingCat ` U ) = ( RingCat ` U ) |
| 46 |
45 2 23 4 7
|
dfringc2 |
|- ( ph -> ( RingCat ` U ) = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( comp ` ( ExtStrCat ` U ) ) >. } ) |
| 47 |
39 44 46
|
3eqtr4d |
|- ( ph -> ( C |`cat H ) = ( RingCat ` U ) ) |