Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsubcrngc.c |
|- C = ( RngCat ` U ) |
2 |
|
rhmsubcrngc.u |
|- ( ph -> U e. V ) |
3 |
|
rhmsubcrngc.b |
|- ( ph -> B = ( Ring i^i U ) ) |
4 |
|
rhmsubcrngc.h |
|- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
5 |
|
eqidd |
|- ( ph -> ( U i^i Rng ) = ( U i^i Rng ) ) |
6 |
|
eqidd |
|- ( ph -> ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) = ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) |
7 |
|
eqidd |
|- ( ph -> ( comp ` ( ExtStrCat ` U ) ) = ( comp ` ( ExtStrCat ` U ) ) ) |
8 |
1 2 5 6 7
|
dfrngc2 |
|- ( ph -> C = { <. ( Base ` ndx ) , ( U i^i Rng ) >. , <. ( Hom ` ndx ) , ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) >. , <. ( comp ` ndx ) , ( comp ` ( ExtStrCat ` U ) ) >. } ) |
9 |
|
inex1g |
|- ( U e. V -> ( U i^i Rng ) e. _V ) |
10 |
2 9
|
syl |
|- ( ph -> ( U i^i Rng ) e. _V ) |
11 |
|
rnghmfn |
|- RngHomo Fn ( Rng X. Rng ) |
12 |
|
fnfun |
|- ( RngHomo Fn ( Rng X. Rng ) -> Fun RngHomo ) |
13 |
11 12
|
mp1i |
|- ( ph -> Fun RngHomo ) |
14 |
|
sqxpexg |
|- ( ( U i^i Rng ) e. _V -> ( ( U i^i Rng ) X. ( U i^i Rng ) ) e. _V ) |
15 |
10 14
|
syl |
|- ( ph -> ( ( U i^i Rng ) X. ( U i^i Rng ) ) e. _V ) |
16 |
|
resfunexg |
|- ( ( Fun RngHomo /\ ( ( U i^i Rng ) X. ( U i^i Rng ) ) e. _V ) -> ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) e. _V ) |
17 |
13 15 16
|
syl2anc |
|- ( ph -> ( RngHomo |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) e. _V ) |
18 |
|
fvexd |
|- ( ph -> ( comp ` ( ExtStrCat ` U ) ) e. _V ) |
19 |
|
rhmfn |
|- RingHom Fn ( Ring X. Ring ) |
20 |
|
fnfun |
|- ( RingHom Fn ( Ring X. Ring ) -> Fun RingHom ) |
21 |
19 20
|
mp1i |
|- ( ph -> Fun RingHom ) |
22 |
|
incom |
|- ( Ring i^i U ) = ( U i^i Ring ) |
23 |
3 22
|
eqtrdi |
|- ( ph -> B = ( U i^i Ring ) ) |
24 |
|
inex1g |
|- ( U e. V -> ( U i^i Ring ) e. _V ) |
25 |
2 24
|
syl |
|- ( ph -> ( U i^i Ring ) e. _V ) |
26 |
23 25
|
eqeltrd |
|- ( ph -> B e. _V ) |
27 |
|
sqxpexg |
|- ( B e. _V -> ( B X. B ) e. _V ) |
28 |
26 27
|
syl |
|- ( ph -> ( B X. B ) e. _V ) |
29 |
|
resfunexg |
|- ( ( Fun RingHom /\ ( B X. B ) e. _V ) -> ( RingHom |` ( B X. B ) ) e. _V ) |
30 |
21 28 29
|
syl2anc |
|- ( ph -> ( RingHom |` ( B X. B ) ) e. _V ) |
31 |
4 30
|
eqeltrd |
|- ( ph -> H e. _V ) |
32 |
|
ringrng |
|- ( r e. Ring -> r e. Rng ) |
33 |
32
|
a1i |
|- ( ph -> ( r e. Ring -> r e. Rng ) ) |
34 |
33
|
ssrdv |
|- ( ph -> Ring C_ Rng ) |
35 |
34
|
ssrind |
|- ( ph -> ( Ring i^i U ) C_ ( Rng i^i U ) ) |
36 |
|
incom |
|- ( U i^i Rng ) = ( Rng i^i U ) |
37 |
36
|
a1i |
|- ( ph -> ( U i^i Rng ) = ( Rng i^i U ) ) |
38 |
35 3 37
|
3sstr4d |
|- ( ph -> B C_ ( U i^i Rng ) ) |
39 |
8 10 17 18 31 38
|
estrres |
|- ( ph -> ( ( C |`s B ) sSet <. ( Hom ` ndx ) , H >. ) = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( comp ` ( ExtStrCat ` U ) ) >. } ) |
40 |
|
eqid |
|- ( C |`cat H ) = ( C |`cat H ) |
41 |
|
fvexd |
|- ( ph -> ( RngCat ` U ) e. _V ) |
42 |
1 41
|
eqeltrid |
|- ( ph -> C e. _V ) |
43 |
23 4
|
rhmresfn |
|- ( ph -> H Fn ( B X. B ) ) |
44 |
40 42 26 43
|
rescval2 |
|- ( ph -> ( C |`cat H ) = ( ( C |`s B ) sSet <. ( Hom ` ndx ) , H >. ) ) |
45 |
|
eqid |
|- ( RingCat ` U ) = ( RingCat ` U ) |
46 |
45 2 23 4 7
|
dfringc2 |
|- ( ph -> ( RingCat ` U ) = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , ( comp ` ( ExtStrCat ` U ) ) >. } ) |
47 |
39 44 46
|
3eqtr4d |
|- ( ph -> ( C |`cat H ) = ( RingCat ` U ) ) |