Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsscrnghm.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
2 |
|
rhmsscrnghm.r |
⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) |
3 |
|
rhmsscrnghm.s |
⊢ ( 𝜑 → 𝑆 = ( Rng ∩ 𝑈 ) ) |
4 |
|
ringrng |
⊢ ( 𝑟 ∈ Ring → 𝑟 ∈ Rng ) |
5 |
4
|
a1i |
⊢ ( 𝜑 → ( 𝑟 ∈ Ring → 𝑟 ∈ Rng ) ) |
6 |
5
|
ssrdv |
⊢ ( 𝜑 → Ring ⊆ Rng ) |
7 |
6
|
ssrind |
⊢ ( 𝜑 → ( Ring ∩ 𝑈 ) ⊆ ( Rng ∩ 𝑈 ) ) |
8 |
7 2 3
|
3sstr4d |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑆 ) |
9 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
11 |
10
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) ↔ ℎ ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
12 |
|
rhmisrnghm |
⊢ ( ℎ ∈ ( 𝑥 RingHom 𝑦 ) → ℎ ∈ ( 𝑥 RngHomo 𝑦 ) ) |
13 |
8
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 → 𝑥 ∈ 𝑆 ) ) |
14 |
8
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑅 → 𝑦 ∈ 𝑆 ) ) |
15 |
13 14
|
anim12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ) |
16 |
15
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) |
17 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 RngHomo 𝑦 ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 RngHomo 𝑦 ) ) |
19 |
18
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑥 ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ↔ ℎ ∈ ( 𝑥 RngHomo 𝑦 ) ) ) |
20 |
12 19
|
syl5ibr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑥 RingHom 𝑦 ) → ℎ ∈ ( 𝑥 ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) ) |
21 |
11 20
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) → ℎ ∈ ( 𝑥 ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) ) |
22 |
21
|
ssrdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) ⊆ ( 𝑥 ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) |
23 |
22
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) ⊆ ( 𝑥 ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) |
24 |
|
inss1 |
⊢ ( Ring ∩ 𝑈 ) ⊆ Ring |
25 |
2 24
|
eqsstrdi |
⊢ ( 𝜑 → 𝑅 ⊆ Ring ) |
26 |
|
xpss12 |
⊢ ( ( 𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring ) → ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) |
27 |
25 25 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) |
28 |
|
rhmfn |
⊢ RingHom Fn ( Ring × Ring ) |
29 |
|
fnssresb |
⊢ ( RingHom Fn ( Ring × Ring ) → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ↔ ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) ) |
30 |
28 29
|
mp1i |
⊢ ( 𝜑 → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ↔ ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) ) |
31 |
27 30
|
mpbird |
⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ) |
32 |
|
inss1 |
⊢ ( Rng ∩ 𝑈 ) ⊆ Rng |
33 |
3 32
|
eqsstrdi |
⊢ ( 𝜑 → 𝑆 ⊆ Rng ) |
34 |
|
xpss12 |
⊢ ( ( 𝑆 ⊆ Rng ∧ 𝑆 ⊆ Rng ) → ( 𝑆 × 𝑆 ) ⊆ ( Rng × Rng ) ) |
35 |
33 33 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ⊆ ( Rng × Rng ) ) |
36 |
|
rnghmfn |
⊢ RngHomo Fn ( Rng × Rng ) |
37 |
|
fnssresb |
⊢ ( RngHomo Fn ( Rng × Rng ) → ( ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ↔ ( 𝑆 × 𝑆 ) ⊆ ( Rng × Rng ) ) ) |
38 |
36 37
|
mp1i |
⊢ ( 𝜑 → ( ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ↔ ( 𝑆 × 𝑆 ) ⊆ ( Rng × Rng ) ) ) |
39 |
35 38
|
mpbird |
⊢ ( 𝜑 → ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ) |
40 |
|
incom |
⊢ ( Rng ∩ 𝑈 ) = ( 𝑈 ∩ Rng ) |
41 |
|
inex1g |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Rng ) ∈ V ) |
42 |
40 41
|
eqeltrid |
⊢ ( 𝑈 ∈ 𝑉 → ( Rng ∩ 𝑈 ) ∈ V ) |
43 |
1 42
|
syl |
⊢ ( 𝜑 → ( Rng ∩ 𝑈 ) ∈ V ) |
44 |
3 43
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
45 |
31 39 44
|
isssc |
⊢ ( 𝜑 → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) ↔ ( 𝑅 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) ⊆ ( 𝑥 ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) ) ) |
46 |
8 23 45
|
mpbir2and |
⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( RngHomo ↾ ( 𝑆 × 𝑆 ) ) ) |