| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmsscrnghm.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 2 |
|
rhmsscrnghm.r |
⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) |
| 3 |
|
rhmsscrnghm.s |
⊢ ( 𝜑 → 𝑆 = ( Rng ∩ 𝑈 ) ) |
| 4 |
|
ringrng |
⊢ ( 𝑟 ∈ Ring → 𝑟 ∈ Rng ) |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ( 𝑟 ∈ Ring → 𝑟 ∈ Rng ) ) |
| 6 |
5
|
ssrdv |
⊢ ( 𝜑 → Ring ⊆ Rng ) |
| 7 |
6
|
ssrind |
⊢ ( 𝜑 → ( Ring ∩ 𝑈 ) ⊆ ( Rng ∩ 𝑈 ) ) |
| 8 |
7 2 3
|
3sstr4d |
⊢ ( 𝜑 → 𝑅 ⊆ 𝑆 ) |
| 9 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 11 |
10
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) ↔ ℎ ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
| 12 |
|
rhmisrnghm |
⊢ ( ℎ ∈ ( 𝑥 RingHom 𝑦 ) → ℎ ∈ ( 𝑥 RngHom 𝑦 ) ) |
| 13 |
8
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 → 𝑥 ∈ 𝑆 ) ) |
| 14 |
8
|
sseld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑅 → 𝑦 ∈ 𝑆 ) ) |
| 15 |
13 14
|
anim12d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ) |
| 16 |
15
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) |
| 17 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 RngHom 𝑦 ) ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 RngHom 𝑦 ) ) |
| 19 |
18
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ↔ ℎ ∈ ( 𝑥 RngHom 𝑦 ) ) ) |
| 20 |
12 19
|
imbitrrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑥 RingHom 𝑦 ) → ℎ ∈ ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) ) |
| 21 |
11 20
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) → ℎ ∈ ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) ) |
| 22 |
21
|
ssrdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) ⊆ ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) |
| 23 |
22
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) ⊆ ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) |
| 24 |
|
inss1 |
⊢ ( Ring ∩ 𝑈 ) ⊆ Ring |
| 25 |
2 24
|
eqsstrdi |
⊢ ( 𝜑 → 𝑅 ⊆ Ring ) |
| 26 |
|
xpss12 |
⊢ ( ( 𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring ) → ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) |
| 27 |
25 25 26
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) |
| 28 |
|
rhmfn |
⊢ RingHom Fn ( Ring × Ring ) |
| 29 |
|
fnssresb |
⊢ ( RingHom Fn ( Ring × Ring ) → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ↔ ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) ) |
| 30 |
28 29
|
mp1i |
⊢ ( 𝜑 → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ↔ ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) ) |
| 31 |
27 30
|
mpbird |
⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ) |
| 32 |
|
inss1 |
⊢ ( Rng ∩ 𝑈 ) ⊆ Rng |
| 33 |
3 32
|
eqsstrdi |
⊢ ( 𝜑 → 𝑆 ⊆ Rng ) |
| 34 |
|
xpss12 |
⊢ ( ( 𝑆 ⊆ Rng ∧ 𝑆 ⊆ Rng ) → ( 𝑆 × 𝑆 ) ⊆ ( Rng × Rng ) ) |
| 35 |
33 33 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ⊆ ( Rng × Rng ) ) |
| 36 |
|
rnghmfn |
⊢ RngHom Fn ( Rng × Rng ) |
| 37 |
|
fnssresb |
⊢ ( RngHom Fn ( Rng × Rng ) → ( ( RngHom ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ↔ ( 𝑆 × 𝑆 ) ⊆ ( Rng × Rng ) ) ) |
| 38 |
36 37
|
mp1i |
⊢ ( 𝜑 → ( ( RngHom ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ↔ ( 𝑆 × 𝑆 ) ⊆ ( Rng × Rng ) ) ) |
| 39 |
35 38
|
mpbird |
⊢ ( 𝜑 → ( RngHom ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ) |
| 40 |
|
incom |
⊢ ( Rng ∩ 𝑈 ) = ( 𝑈 ∩ Rng ) |
| 41 |
|
inex1g |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Rng ) ∈ V ) |
| 42 |
40 41
|
eqeltrid |
⊢ ( 𝑈 ∈ 𝑉 → ( Rng ∩ 𝑈 ) ∈ V ) |
| 43 |
1 42
|
syl |
⊢ ( 𝜑 → ( Rng ∩ 𝑈 ) ∈ V ) |
| 44 |
3 43
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 45 |
31 39 44
|
isssc |
⊢ ( 𝜑 → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( RngHom ↾ ( 𝑆 × 𝑆 ) ) ↔ ( 𝑅 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) ⊆ ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) ) ) |
| 46 |
8 23 45
|
mpbir2and |
⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( RngHom ↾ ( 𝑆 × 𝑆 ) ) ) |