Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsubcrngc.c |
|- C = ( RngCat ` U ) |
2 |
|
rhmsubcrngc.u |
|- ( ph -> U e. V ) |
3 |
|
rhmsubcrngc.b |
|- ( ph -> B = ( Ring i^i U ) ) |
4 |
|
rhmsubcrngc.h |
|- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
5 |
|
eqid |
|- ( RngCat ` U ) = ( RngCat ` U ) |
6 |
|
eqid |
|- ( Base ` ( RngCat ` U ) ) = ( Base ` ( RngCat ` U ) ) |
7 |
5 6 2
|
rngcbas |
|- ( ph -> ( Base ` ( RngCat ` U ) ) = ( U i^i Rng ) ) |
8 |
|
incom |
|- ( U i^i Rng ) = ( Rng i^i U ) |
9 |
7 8
|
eqtrdi |
|- ( ph -> ( Base ` ( RngCat ` U ) ) = ( Rng i^i U ) ) |
10 |
2 3 9
|
rhmsscrnghm |
|- ( ph -> ( RingHom |` ( B X. B ) ) C_cat ( RngHomo |` ( ( Base ` ( RngCat ` U ) ) X. ( Base ` ( RngCat ` U ) ) ) ) ) |
11 |
1
|
a1i |
|- ( ph -> C = ( RngCat ` U ) ) |
12 |
11
|
fveq2d |
|- ( ph -> ( Base ` C ) = ( Base ` ( RngCat ` U ) ) ) |
13 |
12
|
sqxpeqd |
|- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = ( ( Base ` ( RngCat ` U ) ) X. ( Base ` ( RngCat ` U ) ) ) ) |
14 |
13
|
reseq2d |
|- ( ph -> ( RngHomo |` ( ( Base ` C ) X. ( Base ` C ) ) ) = ( RngHomo |` ( ( Base ` ( RngCat ` U ) ) X. ( Base ` ( RngCat ` U ) ) ) ) ) |
15 |
10 14
|
breqtrrd |
|- ( ph -> ( RingHom |` ( B X. B ) ) C_cat ( RngHomo |` ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
16 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
17 |
1 16 2
|
rngchomfeqhom |
|- ( ph -> ( Homf ` C ) = ( Hom ` C ) ) |
18 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
19 |
1 16 2 18
|
rngchomfval |
|- ( ph -> ( Hom ` C ) = ( RngHomo |` ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
20 |
17 19
|
eqtrd |
|- ( ph -> ( Homf ` C ) = ( RngHomo |` ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
21 |
15 4 20
|
3brtr4d |
|- ( ph -> H C_cat ( Homf ` C ) ) |
22 |
1 2 3 4
|
rhmsubcrngclem1 |
|- ( ( ph /\ x e. B ) -> ( ( Id ` C ) ` x ) e. ( x H x ) ) |
23 |
1 2 3 4
|
rhmsubcrngclem2 |
|- ( ( ph /\ x e. B ) -> A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) |
24 |
22 23
|
jca |
|- ( ( ph /\ x e. B ) -> ( ( ( Id ` C ) ` x ) e. ( x H x ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) ) |
25 |
24
|
ralrimiva |
|- ( ph -> A. x e. B ( ( ( Id ` C ) ` x ) e. ( x H x ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) ) |
26 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
27 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
28 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
29 |
1
|
rngccat |
|- ( U e. V -> C e. Cat ) |
30 |
2 29
|
syl |
|- ( ph -> C e. Cat ) |
31 |
|
incom |
|- ( Ring i^i U ) = ( U i^i Ring ) |
32 |
3 31
|
eqtrdi |
|- ( ph -> B = ( U i^i Ring ) ) |
33 |
32 4
|
rhmresfn |
|- ( ph -> H Fn ( B X. B ) ) |
34 |
26 27 28 30 33
|
issubc2 |
|- ( ph -> ( H e. ( Subcat ` C ) <-> ( H C_cat ( Homf ` C ) /\ A. x e. B ( ( ( Id ` C ) ` x ) e. ( x H x ) /\ A. y e. B A. z e. B A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) ) ) ) |
35 |
21 25 34
|
mpbir2and |
|- ( ph -> H e. ( Subcat ` C ) ) |