Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsubcrngc.c |
|- C = ( RngCat ` U ) |
2 |
|
rhmsubcrngc.u |
|- ( ph -> U e. V ) |
3 |
|
rhmsubcrngc.b |
|- ( ph -> B = ( Ring i^i U ) ) |
4 |
|
rhmsubcrngc.h |
|- ( ph -> H = ( RingHom |` ( B X. B ) ) ) |
5 |
3
|
eleq2d |
|- ( ph -> ( x e. B <-> x e. ( Ring i^i U ) ) ) |
6 |
|
elin |
|- ( x e. ( Ring i^i U ) <-> ( x e. Ring /\ x e. U ) ) |
7 |
6
|
simplbi |
|- ( x e. ( Ring i^i U ) -> x e. Ring ) |
8 |
5 7
|
syl6bi |
|- ( ph -> ( x e. B -> x e. Ring ) ) |
9 |
8
|
imp |
|- ( ( ph /\ x e. B ) -> x e. Ring ) |
10 |
|
eqid |
|- ( Base ` x ) = ( Base ` x ) |
11 |
10
|
idrhm |
|- ( x e. Ring -> ( _I |` ( Base ` x ) ) e. ( x RingHom x ) ) |
12 |
9 11
|
syl |
|- ( ( ph /\ x e. B ) -> ( _I |` ( Base ` x ) ) e. ( x RingHom x ) ) |
13 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
14 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
15 |
2
|
adantr |
|- ( ( ph /\ x e. B ) -> U e. V ) |
16 |
|
ringrng |
|- ( x e. Ring -> x e. Rng ) |
17 |
16
|
anim2i |
|- ( ( x e. U /\ x e. Ring ) -> ( x e. U /\ x e. Rng ) ) |
18 |
17
|
ancoms |
|- ( ( x e. Ring /\ x e. U ) -> ( x e. U /\ x e. Rng ) ) |
19 |
6 18
|
sylbi |
|- ( x e. ( Ring i^i U ) -> ( x e. U /\ x e. Rng ) ) |
20 |
19
|
adantl |
|- ( ( ph /\ x e. ( Ring i^i U ) ) -> ( x e. U /\ x e. Rng ) ) |
21 |
|
elin |
|- ( x e. ( U i^i Rng ) <-> ( x e. U /\ x e. Rng ) ) |
22 |
20 21
|
sylibr |
|- ( ( ph /\ x e. ( Ring i^i U ) ) -> x e. ( U i^i Rng ) ) |
23 |
1 13 2
|
rngcbas |
|- ( ph -> ( Base ` C ) = ( U i^i Rng ) ) |
24 |
23
|
adantr |
|- ( ( ph /\ x e. ( Ring i^i U ) ) -> ( Base ` C ) = ( U i^i Rng ) ) |
25 |
22 24
|
eleqtrrd |
|- ( ( ph /\ x e. ( Ring i^i U ) ) -> x e. ( Base ` C ) ) |
26 |
25
|
ex |
|- ( ph -> ( x e. ( Ring i^i U ) -> x e. ( Base ` C ) ) ) |
27 |
5 26
|
sylbid |
|- ( ph -> ( x e. B -> x e. ( Base ` C ) ) ) |
28 |
27
|
imp |
|- ( ( ph /\ x e. B ) -> x e. ( Base ` C ) ) |
29 |
1 13 14 15 28 10
|
rngcid |
|- ( ( ph /\ x e. B ) -> ( ( Id ` C ) ` x ) = ( _I |` ( Base ` x ) ) ) |
30 |
4
|
oveqdr |
|- ( ( ph /\ x e. B ) -> ( x H x ) = ( x ( RingHom |` ( B X. B ) ) x ) ) |
31 |
|
eqid |
|- ( RingCat ` U ) = ( RingCat ` U ) |
32 |
|
eqid |
|- ( Base ` ( RingCat ` U ) ) = ( Base ` ( RingCat ` U ) ) |
33 |
|
eqid |
|- ( Hom ` ( RingCat ` U ) ) = ( Hom ` ( RingCat ` U ) ) |
34 |
31 32 2 33
|
ringchomfval |
|- ( ph -> ( Hom ` ( RingCat ` U ) ) = ( RingHom |` ( ( Base ` ( RingCat ` U ) ) X. ( Base ` ( RingCat ` U ) ) ) ) ) |
35 |
31 32 2
|
ringcbas |
|- ( ph -> ( Base ` ( RingCat ` U ) ) = ( U i^i Ring ) ) |
36 |
|
incom |
|- ( Ring i^i U ) = ( U i^i Ring ) |
37 |
3 36
|
eqtrdi |
|- ( ph -> B = ( U i^i Ring ) ) |
38 |
37
|
eqcomd |
|- ( ph -> ( U i^i Ring ) = B ) |
39 |
35 38
|
eqtrd |
|- ( ph -> ( Base ` ( RingCat ` U ) ) = B ) |
40 |
39
|
sqxpeqd |
|- ( ph -> ( ( Base ` ( RingCat ` U ) ) X. ( Base ` ( RingCat ` U ) ) ) = ( B X. B ) ) |
41 |
40
|
reseq2d |
|- ( ph -> ( RingHom |` ( ( Base ` ( RingCat ` U ) ) X. ( Base ` ( RingCat ` U ) ) ) ) = ( RingHom |` ( B X. B ) ) ) |
42 |
34 41
|
eqtrd |
|- ( ph -> ( Hom ` ( RingCat ` U ) ) = ( RingHom |` ( B X. B ) ) ) |
43 |
42
|
adantr |
|- ( ( ph /\ x e. B ) -> ( Hom ` ( RingCat ` U ) ) = ( RingHom |` ( B X. B ) ) ) |
44 |
43
|
eqcomd |
|- ( ( ph /\ x e. B ) -> ( RingHom |` ( B X. B ) ) = ( Hom ` ( RingCat ` U ) ) ) |
45 |
44
|
oveqd |
|- ( ( ph /\ x e. B ) -> ( x ( RingHom |` ( B X. B ) ) x ) = ( x ( Hom ` ( RingCat ` U ) ) x ) ) |
46 |
37
|
eleq2d |
|- ( ph -> ( x e. B <-> x e. ( U i^i Ring ) ) ) |
47 |
46
|
biimpa |
|- ( ( ph /\ x e. B ) -> x e. ( U i^i Ring ) ) |
48 |
35
|
adantr |
|- ( ( ph /\ x e. B ) -> ( Base ` ( RingCat ` U ) ) = ( U i^i Ring ) ) |
49 |
47 48
|
eleqtrrd |
|- ( ( ph /\ x e. B ) -> x e. ( Base ` ( RingCat ` U ) ) ) |
50 |
31 32 15 33 49 49
|
ringchom |
|- ( ( ph /\ x e. B ) -> ( x ( Hom ` ( RingCat ` U ) ) x ) = ( x RingHom x ) ) |
51 |
30 45 50
|
3eqtrd |
|- ( ( ph /\ x e. B ) -> ( x H x ) = ( x RingHom x ) ) |
52 |
12 29 51
|
3eltr4d |
|- ( ( ph /\ x e. B ) -> ( ( Id ` C ) ` x ) e. ( x H x ) ) |