Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsubcrngc.c |
⊢ 𝐶 = ( RngCat ‘ 𝑈 ) |
2 |
|
rhmsubcrngc.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
rhmsubcrngc.b |
⊢ ( 𝜑 → 𝐵 = ( Ring ∩ 𝑈 ) ) |
4 |
|
rhmsubcrngc.h |
⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
5 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝜑 ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝜑 ) |
7 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) |
9 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) |
10 |
4
|
rhmresel |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) |
11 |
6 8 9 10
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
13 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
14 |
12 13
|
anim12i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
16 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
17 |
4
|
rhmresel |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) |
18 |
6 15 16 17
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) |
19 |
|
rhmco |
⊢ ( ( 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ∧ 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
20 |
11 18 19
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
21 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑈 ∈ 𝑉 ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑈 ∈ 𝑉 ) |
23 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
24 |
3
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Ring ∩ 𝑈 ) ) ) |
25 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( Ring ∩ 𝑈 ) → 𝑥 ∈ 𝑈 ) |
26 |
24 25
|
syl6bi |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝑈 ) ) |
27 |
26
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑈 ) |
28 |
27
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑥 ∈ 𝑈 ) |
29 |
3
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Ring ∩ 𝑈 ) ) ) |
30 |
|
elinel2 |
⊢ ( 𝑦 ∈ ( Ring ∩ 𝑈 ) → 𝑦 ∈ 𝑈 ) |
31 |
29 30
|
syl6bi |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈 ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑈 ) ) |
33 |
32
|
com12 |
⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑦 ∈ 𝑈 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑦 ∈ 𝑈 ) ) |
35 |
34
|
impcom |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝑈 ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑦 ∈ 𝑈 ) |
37 |
3
|
eleq2d |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ( Ring ∩ 𝑈 ) ) ) |
38 |
|
elinel2 |
⊢ ( 𝑧 ∈ ( Ring ∩ 𝑈 ) → 𝑧 ∈ 𝑈 ) |
39 |
37 38
|
syl6bi |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈 ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐵 → 𝑧 ∈ 𝑈 ) ) |
41 |
40
|
adantld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝑈 ) ) |
42 |
41
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝑈 ) |
43 |
42
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝑈 ) |
44 |
|
simprl |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) → 𝜑 ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝜑 ) |
46 |
12
|
anim1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
47 |
46
|
ancoms |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
49 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
50 |
45 48 49 17
|
syl3anc |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) |
51 |
|
eqid |
⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) |
52 |
|
eqid |
⊢ ( Base ‘ 𝑦 ) = ( Base ‘ 𝑦 ) |
53 |
51 52
|
rhmf |
⊢ ( 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
54 |
50 53
|
syl |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
55 |
54
|
exp31 |
⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) ) |
57 |
56
|
impcom |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
58 |
57
|
com12 |
⊢ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
60 |
59
|
impcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
61 |
10
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) |
62 |
|
eqid |
⊢ ( Base ‘ 𝑧 ) = ( Base ‘ 𝑧 ) |
63 |
52 62
|
rhmf |
⊢ ( 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
64 |
61 63
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
65 |
64
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
66 |
65
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
67 |
66
|
adantld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
68 |
67
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
69 |
1 22 23 28 36 43 60 68
|
rngcco |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
70 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐻 = ( RingHom ↾ ( 𝐵 × 𝐵 ) ) ) |
71 |
70
|
oveqdr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑧 ) ) |
72 |
|
ovres |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
73 |
72
|
ad2ant2l |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ( RingHom ↾ ( 𝐵 × 𝐵 ) ) 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
74 |
71 73
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
75 |
74
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
76 |
20 69 75
|
3eltr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
77 |
76
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
78 |
77
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |