Step |
Hyp |
Ref |
Expression |
1 |
|
rhmsubcrngc.c |
|
2 |
|
rhmsubcrngc.u |
|
3 |
|
rhmsubcrngc.b |
|
4 |
|
rhmsubcrngc.h |
|
5 |
|
simpl |
|
6 |
5
|
ad2antrr |
|
7 |
|
simpr |
|
8 |
7
|
adantr |
|
9 |
|
simprr |
|
10 |
4
|
rhmresel |
|
11 |
6 8 9 10
|
syl3anc |
|
12 |
|
simpr |
|
13 |
|
simpl |
|
14 |
12 13
|
anim12i |
|
15 |
14
|
adantr |
|
16 |
|
simprl |
|
17 |
4
|
rhmresel |
|
18 |
6 15 16 17
|
syl3anc |
|
19 |
|
rhmco |
|
20 |
11 18 19
|
syl2anc |
|
21 |
2
|
adantr |
|
22 |
21
|
ad2antrr |
|
23 |
|
eqid |
|
24 |
3
|
eleq2d |
|
25 |
|
elinel2 |
|
26 |
24 25
|
syl6bi |
|
27 |
26
|
imp |
|
28 |
27
|
ad2antrr |
|
29 |
3
|
eleq2d |
|
30 |
|
elinel2 |
|
31 |
29 30
|
syl6bi |
|
32 |
31
|
adantr |
|
33 |
32
|
com12 |
|
34 |
33
|
adantr |
|
35 |
34
|
impcom |
|
36 |
35
|
adantr |
|
37 |
3
|
eleq2d |
|
38 |
|
elinel2 |
|
39 |
37 38
|
syl6bi |
|
40 |
39
|
adantr |
|
41 |
40
|
adantld |
|
42 |
41
|
imp |
|
43 |
42
|
adantr |
|
44 |
|
simprl |
|
45 |
44
|
adantr |
|
46 |
12
|
anim1i |
|
47 |
46
|
ancoms |
|
48 |
47
|
adantr |
|
49 |
|
simpr |
|
50 |
45 48 49 17
|
syl3anc |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
51 52
|
rhmf |
|
54 |
50 53
|
syl |
|
55 |
54
|
exp31 |
|
56 |
55
|
adantr |
|
57 |
56
|
impcom |
|
58 |
57
|
com12 |
|
59 |
58
|
adantr |
|
60 |
59
|
impcom |
|
61 |
10
|
3expa |
|
62 |
|
eqid |
|
63 |
52 62
|
rhmf |
|
64 |
61 63
|
syl |
|
65 |
64
|
ex |
|
66 |
65
|
adantlr |
|
67 |
66
|
adantld |
|
68 |
67
|
imp |
|
69 |
1 22 23 28 36 43 60 68
|
rngcco |
|
70 |
4
|
adantr |
|
71 |
70
|
oveqdr |
|
72 |
|
ovres |
|
73 |
72
|
ad2ant2l |
|
74 |
71 73
|
eqtrd |
|
75 |
74
|
adantr |
|
76 |
20 69 75
|
3eltr4d |
|
77 |
76
|
ralrimivva |
|
78 |
77
|
ralrimivva |
|